Download presentation
Presentation is loading. Please wait.
Published byElmer Powell Modified over 9 years ago
1
Summary Session 9B Polarized electron (positron) sources
2
Session 9B : Polarized electron (positron) sources Presentations oral : 15 poster : 6 JLAB, SLAC, Univ. of Mainz, Univ. of Bonn, CERN, DESY, St. Petersburg., KEK, Osaka Electro-Communication Univ., Rikkyo Univ., and Nagoya Univ., 11 groups
3
Topics Pol.e- source operation High average current operation High current density test Photocathodes Development strained super-lattice photocathode gridded photocathode, pyramidal shape photocathode Low Emittance Beam Production Polarized electron source for SPLEEM Pol.e ± Source for ILC Polarized electron beam injector Polarized positron beam production
4
Topics : Pol.e- source operation
5
Load lock (GaAs on puck) NEG pipe Laser (1 W @ 532 nm) Faraday Cup High Voltage (100 kV) Activation (Cs/NF3, 5 mm) Experimental Setup 350 m1500 m Spot Size Adjustment High average current test : JLAB pol.e- source J.Grames (JLAB)
6
(Best Solution – Improve Vacuum, but this is not easy) Can increasing the laser spot size improve charge lifetime? Bigger laser spot, same # electrons, same # ions electron beam OUT residual gas cathode Ionized residual gas strikes photocathode anode laser light IN Ion damage distributed over larger area J.Grames (JLAB)
7
Tough to measure >1000 C lifetimes with 100-200 C runs! 5 15 1500 350 2 ≈ 18 Expectation: High average current test : JLAB pol.e- source J.Grames (JLAB)
8
High average current test Mainz pol.e- source Current density is presently limited to 1.6 A/cm 2. 57 mA in 100 s long pulses at 100 Hz repetition rate. Q=5.7 C per Impulse emitted area *(1.05mm) 2 ~3.5 mm 2 hole concentration 2*10 19 cm -3 Power, W 15 Wavelength, nm 808 (fixed) Pulse length, ms 0.1-10 Frequency, Hz 100 Beam divergence, N.A. 0.16 K.Aulenbacher (Mainz)
9
Non-linear effects 1: Cathode heating Photocathode vacuum lifetime normalized to the vacuum lifetime at the laser power 23 mW (>300h) (no current drawn during ill.). We are here at I=1mA (QE=20mA/W) K.Aulenbacher (Mainz)
10
Bunch width (FWHM): 1.6ns Bunch charge : 8nC Laser spot size : ~20mm, Peak current density ~18 mA/mm 2 No Charge Limit bunch charge : 3.3pC/bunch Laser Spot size ~1.6mm(2 ) bunch width : ~30ps (estimate) Peak current density (estimate) : ~240 mA/mm 2 High current density test Nagoya pol.e- source M.Yamamoto (Nagoya)
11
Load-lock gun operation at Univ.Bonn P = 80% @ 830 nm QE = 0.2 % M.Eberhardt and J.Wittschen (Bonn)
12
New Load-Lock at Univ.Bonn M.Eberhardt and J.Wittschen (Bonn)
13
Topics : Photocathodes Development
14
CompositionThicknessDoping As cap GaAs QW60 A 7 10 18 cm -3 Be Al 0.36 Ga 0.64 As SL 23 A 3 10 17 cm -3 Be In 0.155 Al 0.2 Ga 0.645 As 51 A Al 0.4 Ga 0.6 AsBuffer 0.3 m6 10 18 cm -3 Be p-GaAs substrate MBE grown InAlGaAs/AlGaAs strained-well superlattice E g =1.543eV, Valence band splitting E hh1 - E lh1 = 60 meV, P max =92%, QE=0.6%. Y.Mamaev (St.Petersburg)
15
SL In 0.155 Al 0.2 Ga 0.645 As(5.1nm)/Al 0.36 Ga 0.64 As(2.3nm), 4 pairs Y.Mamaev (St.Petersburg) The optimization of DBR – superlattice structures is underway. polarization(max.) : 92%, Quantum efficiency : 0.6%
16
Material specific depolarization emit = 3-5 ps (Mainz) emit = 3-5 ps (Mainz) If s < 35 ps, the spin relaxation time has a significant effect on polarization. If s < 35 ps, the spin relaxation time has a significant effect on polarization. D’yakonov-Perel (DP) mechanism is dominant in low doped SL. D’yakonov-Perel (DP) mechanism is dominant in low doped SL. DP mechanism comes from the spin-orbit interaction. DP mechanism comes from the spin-orbit interaction. Find materials with a smaller spin-orbit interaction. Find materials with a smaller spin-orbit interaction. GaN GaP GaAs GaSb GaN GaP GaAs GaSb SO (eV) 0.01 0.08 0.34 0.76 SO (eV) 0.01 0.08 0.34 0.76 Try GaAs/InGaP strained-superlattice Try GaAs/InGaP strained-superlattice P 0 : Initial polarization P 0 : Initial polarization s : spin relaxation time s : spin relaxation time emit : photoemission time emit : photoemission time P BBR : depolarization at BBR P BBR : depolarization at BBR T.Maruyama (SLAC)
17
Spin relaxation rate based on D’yakonov-Perel mechanism : spin-orbit-induced spin splitting coefficient : spin-orbit-induced spin splitting coefficient E 1e : confinement energy E 1e : confinement energy Narrower well has a larger confinement energy. Narrower well has a larger confinement energy. Larger confinement energy Larger confinement energy Less vertical transport, thus lower QE Less vertical transport, thus lower QE More scattering, thus lower polarization. More scattering, thus lower polarization. s ~ 10 ps s ~ 2 ps T.Maruyama (SLAC)
18
Superlattice structure affects dramatically 1.5 nm GaAs + 4 nm In 0.65 Ga 0.35 P4 nm GaAs + 1.5 nm In 0.65 Ga 0.35 P QE ~ 0.002% Pol ~ 40% QE ~ 0.01% Pol ~ 68% T.Maruyama (SLAC)
19
Structure of gridded cathode CompositionThicknessDoping p- GaAs substrate, 5x10 18 cm -3 Zn doped Al.3 Ga.7 As buffer 5x10 18 cm -3 Be doped GaAs,AlGaAs, GaAsP/GaAs active region 90nm 10 14 - 10 18 cm -3 Be doped GaAs surface region 5-10nm 1- 5x10 19 cm -3 Be doped MBE grown high surface/low active doping gridded cathode 0.3um W film, Ohmic contact Metal grid, Schottky contact K.Ioakeimidi (SLAC)
20
Thin GaAs films with 4mm 2D grid and 48mm pitch QE&Polarization - gridded samples 5x10 16 cm -3 K.Ioakeimidi (SLAC) Monte Carlo simulations indicate that the QE-Polarization trade off can be broken by accelerating the electrons in the active region Preliminary experimental results indicate a 1% increase in polarization
21
M.Kuwahara (Nagoya) Pol.e- extraction from Pyramid-shaped Photocathode Extraction of polarized electrons by F.E. Electrons extracted by F.E. have higher polarization than NEA ’ s. long lifetime compared with NEA surface.
22
Topics : Low Emittance Beam Production
23
Low Emittance Beam extraction from GaAs-GaAsP superlattice photocathode N.Yamamoto (Nagoya)
24
Low Emittance Beam extraction from GaAs-GaAsP superlattice photocathode rms : 0.096±0.015 .mm.mrad N.Yamamoto (Nagoya)
25
Topics : Polarized electron source for SPLEEM
26
Yasue (Osaka Elec.Comuni.Univ) Reflection Diffraction sample Electrons Low energy electrons: strong interaction with surfaces - relatively high reflectivity - small penetration depth SURFACE SENSITIVE energy filter electron optics manipulator 20cm CCD camera sample objective lens beam separator energy filter screen e - source HV LEEM (Low Energy Electron Microscopy)
27
Co/W(110) 3.8eV FOV=25 m in-plane =0 o =45 o =90 o =-45 o =-90 o MM P M CONTRAST: P·M P // M: maximum (minimum) P M: 0 Yasue (Osaka Elec.Comuni.Univ) Spin Polarized LEEM (SPLEEM)
28
Exchange Asymmetry A SPLEEM Contrast: HIGH POLARIZATION FAST ACQUISITION OF SPLEEM IMAGE For higher magnification For much faster acquisition HIGH BRIGHTNESS (HIGH INTENSITY) SOURCE Yasue (Osaka Elec.Comuni.Univ)
29
S.Okumi (Nagoya) focusing length ~ 4mm spot size ~ 3 m Concept of extracting high brightness beam
30
S.Okumi (Nagoya)
31
Topics : Pol.e ± Source for ILC
32
L- band bunc her 6.4 nC, 2 ns ILC e- injector with SLC gun and drift distance to SHB1 75 202 33 20 bend DC gun SHB1SHB2 Two 5-cell L-band 10205 Two 50-cell NC L-band pre-acceleration All units in cm …… J.E.Clendenin (SLAC)ParameterUnitsAt gun exit After bunchers*ChargenC6.46.2 Bunch length (FWHM) ps Deg. L- band 2000 932 14 6.8 Energy/Energy spread MeV0.129.5/0.09 (0.95%) Normalized rms emittance 10 -6 m n/a43 PARMELA results
33
M.Yamamoto (Nagoya) Solenoid 4.8nC, 16mm 00.150.5[m] anode Solenoid 200kV,1.0ns,4.8nC SHB1SHB2 01.03.03.4[m] 108MHz433MHz 200keV,4.8nC,1.0ns Similar geometry of TESLA 2001-22 (Aline Curtoni et al). rms ~ 9.7 pi.mm.mrad Beam Simulation (Nagoya 200keV Gun)
34
A.Brachmann (SLAC) Schematic Layout
35
A.Brachmann (SLAC) Two 5-cell SW L-band108MHz SHB 433 MHz SHB 1 st TW Structure2 nd TW Structure matching triplet Low Energy Beam Line and Bunching System Simulations including Space Charge
36
Spin Rotation using Solenoids 5 GeV Bend of n * 7.9312 o Odd Integer S longitudonal ~ 7.5 m DR Pair of Solenoids (SC) S vertical (Precession) S transverse (Rotation) ILC design: n = 7 55.51 o Depolarization in arc due to energy spread: Arc bending angleθ = 55.51 o Spin precession angle =(7/2) Energy spreadΔ / = ±0.02 GeV Depolarization (analytic)ΔP/P = 0.024 Particle trackingΔP/P = 0.007 A.Brachmann (SLAC)
37
T.Omori (KEK) Laser-Based Polarized e + e + Source for ILC
38
A = 0.90 ± 0.18 %Pol. = 73 % M. Fukuda et al., PRL 91(2003)164801 T.Omori (KEK)
39
Electron storage ring laser pulse stacking cavities positron stacking in main DR Re-use Concept Compton ring to main linac T.Omori (KEK)
40
P.Shuler (DESY) The E166 Experiment
41
P.Shuler (DESY) Pol.e+ (max.) : ~80%
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.