Download presentation
Presentation is loading. Please wait.
Published byMavis Bryan Modified over 9 years ago
1
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7 雷射線寬 (Linewidth) 及啁啾 (chirp) 量測 Measurement of the intensity dynamics can be carried out using a photodetector and a appropriate electronic receiver. Using the optical mixing and interference techniques,the phase noise and frequency dynamics of optical sources can be measured.
2
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.1 Coherence Time and Linewidth The coherence time,, of a laser is measure of the spectral purity of the laser frequency over time. In two-path interferometers, an optical wave interferes with a time-delayed portion of itself. The degree of interference depends on the coherence time of the wave with respect to the optical delay.
3
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.1 Coherence Time and Linewidth Coherence time is reduced by random events, such as spontaneous emission in the laser cavity, which alter the phase or frequency of the laser-output field. In Fig 7.1(a), the coherence time is longer than that of (b), since the phase is predictable during the interval of time. Phase jumps time (a) (b) Fig.7.1 Concept of coherence time
4
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.1 Coherence Time and Linewidth The coherence time,,varies inversely with laser linewidth,. It is defined as for spectra with Lorentzian line shapes
5
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.1 Coherence Length and Linewidth The coherence length is the coherence time multiplied by velocity of light: is the group velocity is the refractive index, ( approximately 1.47 in optical fiber)
6
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.2 Linewidth and Chirp The phase noise and frequency noise cause spectral broadening in single-longitudinal- mode lasers. Random phase noise is created when spontaneous-emission,originating in the laser cavity gain media,changes the phase of the free running laser frequency.
7
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.2 Linewidth and Chirp The effective amplitude-phase coupling factor, shows the link between power changes in the laser cavity to phase changes of the emitted light. A large value of results in increased laser linewidth. It results in a broadening of the laser spectral linewidth.
8
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.2 Linewidth and Chirp Frequency Chirp Laser frequency chirp results in significant spectral broadening when the laser injection current is modulated. The unwanted frequency modulation (chirp) can broaden the laser spectrum. The magnitude of the chirp is proportional to the amplitude-phase coupling factor..
9
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.2 Linewidth and Chirp E(t) CW optical field Chirped optical field Lower frequency region time Fig7.2 Optical field with and without frequency chirp
10
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.3 Methods of Linewidth Measurement Neither OSA nor wavelength meters have sufficient wavelength resolution to display each longitudinal mode of a laser. Heterodyne and homodyne measurements can be used to study the intensity dynamics.
11
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.3 Methods of Linewidth Measurement Heterodyne measurements: The unknown signal is combined with a narrow-linewidth local oscillator (LO) laser. The LO must have the same polarization as the unknown signal. The intermediate frequency (IF) signal is analyzed with an electronic signal analyzer such as a spectrum analyzer. Fig 7.3 Measurement configuration for Heterodyne spectrum analysis
12
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.3 Methods of Linewidth Measurement Homodyne measurements: Homodyne techniques are similar to heterodyne analysis except that the LO is a time-delayed version of itself. If an optical signal is delayed in time by more than the inverse of the source spectral width (measured in Hz), the signal becomes phase independent of the original signal, allowing it to be an effective LO.
13
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.3 Methods of Linewidth Measurement The asymmetries of the optical spectrum can’t been seen in homodyne measurement. The information about the center wavelength of a laser is not shown in homodyne method. Both methods can be used to characterize laser chirp. Fig 7.4 (a)Intensity modulation sideband for a DFB laser. (b) Unmodulated Linewidth measurement of a DFB laser. (a)Heterodyne (b)Homodyne
14
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.4 Delayed Self-Heterodyne Linewidth Measurement The delayed self-heterodyne technique can perform linewidth measurements without the requirement of a separate local oscillator laser. Frequency Shifter (AO) Fig7.5 Delayed self-heterodyne Optical measurement setup
15
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.4 Delayed Self-Heterodyne Linewidth Measurement Incident light is split into two paths by the interferometer. The optical frequency of one arm is offset with respect to the other. If the delay,,of one path exceeds the coherence time,, of the source, the two combining beams interfere as if they are originated from two independent lasers offset in frequency by i(t) Fig7.6 Equivalent circuit when the interferometer delay time is larger than the signal Coherence time( )
16
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.4 Delayed Self-Heterodyne Linewidth Measurement The incoherent mixing requires a minimum delay requirement of the interferometer with respect to the laser’s linewidth: When this condition is satisfied, the mixing becomes independent of the phase of the interfering light and the measurement is stable. The delayed self-heterodyne photocurrent consists of direct detection as well as the desire mixing point: (ESA=>direct direction + self-heterodyne spectrum)
17
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.5 Delayed Self-Heterodyne Linewidth Measurement is the shift frequency applied to the field traversing one arm of the interferometer and R is the usual detector responsivity. The displayed lineshape will always be symmetrical,even if the original lineshape had important asymmetries. Signal ESA 0 80MHz frequency convolution Fig 7.7 The delayed self-heterodyne mixing of the laser field with a frequency shifted replica.
18
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.4 Delayed Self-Heterodyne Linewidth Measurement For the case of a Lorentizan-shaped field spectrum, the displayed lineshape will be twice of the actual linewidth. Laser sources exhibiting frequency jitter or 1/f noise will yield larger measured linewidths. A larger delay yields a larger linewidth.
19
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.4 Delayed Self-Heterodyne Linewidth Measurement The frequency shift in delayed self- heterodyne linewidth measurements can be obtained a verity of devices including acousto-optic frequency shifters, phase modulators, and intensity modulators. The frequency shift should be larger than the spectral content of the laser under study.
20
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.4 Delayed Self-Heterodyne Linewidth Measurement An Example (from “ Fiber Optic Test and Measurement”, edited by D. Derickson ) An acousto-optic frequency provide an 80 MHz shift frequency for a delayed self-heterodyne linewidth measurement as shown in Fig. The preamplifier following the photodiode provided high gain(~30dB)to reduce the effects if the ESA noise on the sensitivity of the electronic spectrum analysis. 80MHz oscillator Power amplifier AOFS PS input Fiber delay PC SMF Diffracted beam Undiffracted beam stop photodiode ESA G Fig 7.8 Optical self-heterodyne for laser linewidth measurement. AOFS=acousto-optic Frequency shifter
21
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.5 Delayed Self-Homodyne Linewidth Measurement The delayed self-homodyne technique can measure the linewidth of an unmodulated laser. This method has high resolution afforded by using optical interferometers with low-loss fiber optic delays.
22
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.5 Delayed Self-Homodyne Linewidth Measurement Several optical circuit implementations for the delayed self- homodyne method are shown in Fig.7.9 (from “Fiber Optic Test and Measurement”, edited by D. Derickson) Fiber delay PS Fiber delay PS SMF mirror photodiode input PC ESA i(t) (a)Mach-Zehnder interferometer (b)Michelson interferometer Fig 7.9
23
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.5 Delayed Self-Homodyne Linewidth Measurement The photocurrent spectrum for the delayed self- homodyne technique consists of direct detection as well as the desired mixing product but without the frequency shift: (ESA=>direct direction + self-homodyne spectrum) The displayed lineshape will always be symmetrical,even if the original lineshape had important asymmetries.
24
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.5 Delayed Self-Homodyne Linewidth Measurement The translation of linewidth information from the optical spectrum to electrical spectrum is illustrated in Fig. For the case of laser lineshapes described by Lorentzian or Gaussian functions,the displayed electrical power spectrum will have identical functional shapes to the actual optical spectrum. Signal frequency convolution Fig 7.10 The delayed self-homodyne mixing of the laser field.
25
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.6 Laser Chirp Measurement Measurement of chirp provides the dynamics of the laser frequency excursions during intensity modulation. The time dependence of frequency chirp can be characterized using optical discriminators to convert optical frequency variations into detectable intensity variations. A linear optical component with wavelength- dependent transmission characteristics may serve as a discriminator.
26
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.6 Laser Chirp Measurement An interferometer circuit for measuring laser chirp as shown in Fig. (from Fiber Optic Test and Measurement, edited by D. Derickson) The differential time of flight between the two interference path is denoted by. Quadrature Feedback circuit Computer scope High-speed receiver Bias T A B collimator laser modulation to:scope trigger PC lensPZT SOURCE Fig 7.11 Time-domain laser chirp measurement using A Mach-Zehnder interferometer followed by A high-speed receiver.
27
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.6 Laser Chirp Measurement A feedback circuit maintains quadrature by adjusting the delay. This delay adjustment is small,on the order of an optical wavelength. This delay can be realized using piezo-electric(PZT) devices. The measurements apparatus uses a sampling oscilloscope which is triggered by the laser modulation source.
28
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.6 Laser Chirp Measurement Analysis. For interferometers with two optical paths,the average output power interferometer is the sum of the path power contributions and an interference term: is the average optical carrier frequency and is the differential interferometer delay. In the absence of any frequency modulation, is zero
29
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.6 Laser Chirp Measurement Interferometer Delay Requirement. To maintain unambiguous chirp measurement,the peak frequency excursion must be less than one-forth the interferometer free-spectral range. To reduce the effects of noise on the chirp measurement,the maximum chirp is confined to the approximately linear region of the interferometer characteristic :
30
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.6 Laser Chirp Measurement Example. (from “Fiber Optic Test and Measurement”, edited by D. Derickson). Fig 7.12 Optical discriminator used to measure DFB laser.(a) Intensity Modulation.(b)Frequency chirp. 1Gb/s 200ps time intensity Frequency deviation,GHZ 10 5 0 -5 -10 (a) (b)
31
教育部顧問室光通訊系統教育改進計畫台科大 師大 淡江 東南 萬能 教育部顧問室光通訊系統教育改進計畫 台科大 師大 淡江 東南 萬能 7.6 Laser Chirp Measurement Since the measurement is made in the time domain, both the magnitude and the phase of the amplitude and frequency modulation are measured. This technique can also be applied towards frequency domain measurements of the FM response by characterizing laser FM response as a function of modulation frequency applied to the laser.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.