Download presentation
Presentation is loading. Please wait.
Published byGwen Powers Modified over 9 years ago
1
B. Golob, Ljubljana Univ.Belle II Status 1Interplay work., CERN, Dec 2009 Boštjan Golob University of Ljubljana, Jožef Stefan Institute & Belle Collaboration Status of Belle II Project University of Ljubljana “Jožef Stefan” Institute Interplay of Collider and Flavour Physics, CERN, December 14-16, 2009
2
B. Golob, Ljubljana Univ.Belle II Status 2Interplay work., CERN, Dec 2009 Outline 1. KEKB SuperKEKB 2. Belle Belle II vertexing PID EM Calorimeter examples of physics reach “on the fly” 3. Organizational issues
3
B. Golob, Ljubljana Univ.Belle II Status 3Interplay work., CERN, Dec 2009 Introduction B-factories: success story CKM mechanism confirmed at 1st order; small discrepancies exist. Can we do better (in complement to LHC)? O (10 2 ) larger L dt O (10 2 ) larger L dt direct mesurements indirect fit to other observables Super B-factory
4
B. Golob, Ljubljana Univ.Belle II Status 4Interplay work., CERN, Dec 2009 KEKBKEKB: HER: 8.0 GeV LER: 3.5 GeV crossing: 22 mrad E CMS =M( (4S)) =0.425 2009 L dt = 977 fb -1 1999 Tokyo (40 mins by Tsukuba Exps)
5
B. Golob, Ljubljana Univ.Belle II Status 5Interplay work., CERN, Dec 2009 KEKB Tokyo (40 mins by Tsukuba Expss) 2.1x10 34 cm -2 s -1 Crab-crossing:
6
B. Golob, Ljubljana Univ.Belle II Status 6Interplay work., CERN, Dec 2009 small y * small y * small y large y ( y */ y ) small y small x * hourglass effect small x * (more in additional slides) *: beta-function (trajectories envelope) at IP small LER: longer bends; HER: more arc cells small *: separate quadrupoles closer to IP small , *: small dynamic aperture, larger Touschek background and smaller beam dynamic aperture: phase space volume of acceptable trajectories; Touschek effect: Coulomb scattering causing transfer of transverse to longitud. momentum between particles in a bunch; if transfer is too large particles are lost (more in additional slides) high-current: large I nano-beam: small y *[mm]: 5.9(LER)/5.9(HER)→ 0.21/0.37 small x *[mm]: 1200(LER)/1200(HER)→ 32/25 small y : keep current y 0.101(LER)/0.096(HER) → 0.09/0.09 increase I [A]: 1.8(LER)/1.45(HER) → 3.6/2.1 Luminosity: SuperKEKB x ~100 m, y ~2 m x ~10 m, y ~60nm
7
B. Golob, Ljubljana Univ.Belle II Status 7Interplay work., CERN, Dec 2009 e - 2.1 A e + 3.6 A Belle II New positron target / capture section Replace long TRISTAN dipoles with shorter ones (HER). Redesign the HER arcs to squeeze the emitance. TiN coated beam pipe with antechambers New Superconducting / permanent final focusing quads near the IP Low emittance e + for injection Low emittance e - for injection e + source Damping ring Add / modify rf systems. New beam pipe & bellows New IR Low emittance gun SuperKEKB nano-beam
8
B. Golob, Ljubljana Univ.Belle II Status 8Interplay work., CERN, Dec 2009 increasing dynamic aperture: larger crossing angle 2 = 22 mrad 83 mrad smaller asymmetry 3.5 / 8 GeV 4 / 7 Gev optimizing lattice: beam ~ 400 s (target 600 s) with mentioned upgrade example of physics results with L =5 ab -1 A FB in B → K* l + l - L = 8 x10 35 cm -2 s -1 3 year shutdown for upgrade 10 ab -1 (initial target ) 50 ab -1 L =2x10 35 cm -2 s -1 L =8x10 35 cm -2 s -1 L dt [ab -1 ] L =6x10 35 cm -2 s -1 relative increase of L from early KEKB (2001 ) 0 2 4 6 8 10 12 14 16 18 q 2 [GeV 2 ] Belle, PRL103, 171801 (2009), 657M BB C 7 SM C 7 =-C 7 SM SuperKEKB
9
B. Golob, Ljubljana Univ.Belle II Status 9Interplay work., CERN, Dec 2009 have to deal with: higher background radiation damage, higher occupancy higher event rates DAQ improved performance hermeticity vertexing: 2 lyrs DEPFET pixel 4 lyrs DSSD Central Drift Chamber: smaller cell size improved read-out PID: TOP barrel ARICH forward ECL: wave form sampling pure CsI endcaps , K L : scintillator strips endcaps Belle II
10
B. Golob, Ljubljana Univ.Belle II Status 10Interplay work., CERN, Dec 2009 PXD+SVD Belle II r [cm] SVD Belle z [cm] to scale sBelle Design Group, KEK Report 2008-7 Belle II vertexing DEPFET Switcher DCD prototypes June 2010 4-5 months testing production starts January 2011 Belle Belle II B J/ K S MC J/ + - vertex resol. 25% improvement in vtx resol. ~30% improved for K S + - for K S + - (larger radius) z rec -z gen z =25.9 m z =19.6 m DSSD’s pixels sensor thickness 50 m
11
B. Golob, Ljubljana Univ.Belle II Status 11Interplay work., CERN, Dec 2009 example: b→ s decays t-dependent CPV S CP (K s 0 ) = -0.15 ±0.20 C CP (K s 0 ) = -0.07 ±0.12 B decay vtx from K s and IP; (S CP (K s 0 ))= 0.09 @ 5 ab -1 (S CP (K s 0 ))= 0.09 @ 5 ab -1 0.03 @ 50 ab -1 0.03 @ 50 ab -1 HFAG, Winter’09 (~SM prediction) Belle II vertexing # evts needed for given sensitivity relative to Belle MC study of SVD layers positioning: 6th layer at r=13 cm 6th layer at r=14 cm 6th layer at r=15 cm worse worse z 5 ab -1 50 ab -1
12
B. Golob, Ljubljana Univ.Belle II Status 12Interplay work., CERN, Dec 2009 barrel: Time-Of-Propagation counter (TOP) principle: options: quartz bar (2 cm thick) photodetector: microchannel plate PMT cos y: time of propagation x: position MC /fake rate K ± 2 bar 1 bar fake rate 0.82 current Belle endcap: aerogel, n 1.05 photodetector: HAPD or MCP-PMT Belle II PID 2 cm thick quartz bar
13
B. Golob, Ljubljana Univ.Belle II Status 13Interplay work., CERN, Dec 2009 wave form sampling: new electronics: 16 meas. of time and amplitude; fake clusters suppressed by 7x;endcaps: replace CsI(Tl) with pure CsI currently only amplitude measured effect of PID & ECL upgrade (and other improvements) on B →K* 0 Btag, +20% (modes including neutrals) PID, +15%, K +30% Br(B →K* 0 )<3.4x10 -4 @90% C.L. Belle II, 50 ab -1 (incl. semil. tag) expected performance @ 10x bkg. ~ 5%-10% lower at same bkg. level Belle, PRL99, 221802 (2007), 490 fb -1 3 significance @ 45 ab -1 (B tag → hadron only) W. Altmannshofer et al., arXiv:0902.0160 Belle II EM Calorimeter
14
B. Golob, Ljubljana Univ.Belle II Status 14Interplay work., CERN, Dec 2009 Australia Univ. of Sydney Univ. of Melbourne AustriaAustrian Academy of Sciences (HEPHY) China Institute of High Energy Physics, Chinese Academy of Science Univ. of Science and Technology of China CzechCharles University in Prague Germany Karlsruhe Institute of Technology Max-Planck-Institut fur Physik - MPI Munich - Univ. of Giessen Bonn Univ. India Indian Institute of Technology Guwahati Indian Institute of Technology Madras Institute of Mathematical Sciences (Chennai) Panjab Univ. Tata Insitute of Fundamental Research KoreaGyeongsang National Univ. Korea Institute of Science and Technology Information Korea Univ. Kyungpook National Univ. Seoul National Univ. Yonsei Univ. Hanyang Univ. Poland The Henryk Niewodniczanski Institute of Nuclear Physics - Polish Academy of Science Russia Budker Institute of Nuclear Physics Institute for Theoretical Experimental Physics SloveniaJozef Stefan Institute (Ljubljana) Univ. of Nova Gorica TaiwanFu Jen Catholic Univ. National Central Univ. National United Univ National Taiwan Univ. U.S.A.Univ. of Cincinnati Univ. of Hawaii Virginia Polytechnic Institute and State Univ. Wayne State Univ. JapanNagoya Univ. Nara Women's Univ. Niigata Univ. Osaka City Univ. Toho Univ. Tohoku Univ. Tokyo Metroporitan Univ. Univ. of Tokyo KEK 293 members 43 institutions 13 countries Organizational issues
15
B. Golob, Ljubljana Univ.Belle II Status 15Interplay work., CERN, Dec 2009 5th Open Meeting of the Belle II Collaboration March 31st - April 2nd 2010, KEK Organizational issues
16
B. Golob, Ljubljana Univ.Belle II Status 16Interplay work., CERN, Dec 2009 SuperKEKB and Belle II are priorities of KEK 32 oku-¥ for upgrade R&D in fiscal year 2009 Significant funds available to collaborating institutes Request for 2010 and beyond: 350 oku-¥ KEK → MEXT → Ministry of finance Government change in Japan in September 2009 revision of all major projects “Scrutiny and classification” panel of Japanese government recommendation to government re budget allocation for FY 2010 (already made recommendations of severe budget cuts in science) Nov 25th: SuperKEKB discussed with other projects the project was passed, specific recommendation not public Governmental decision expected end 2009/early 2010 So far all the news support our optimism SuperKEKB and Belle II well on the way SuperKEKB and Belle II well on the way 1 oku-¥ = 1M US $ Organizational issues funding situation
17
B. Golob, Ljubljana Univ.Belle II Status 17Interplay work., CERN, Dec 2009 Additional material
18
B. Golob, Ljubljana Univ.Belle II Status 18Interplay work., CERN, Dec 2009 naive luminosity formula: valid if z << * x,y ; if not x,y depending on * x,y reduction of luminosity; effect: more involved formula x,y *: ( x,y1 * 2 + x,y2 * 2 ) horiz., vertical bunch size @ IP focusing quad defocusing quad (s) function to avoid large hourglass effect (reducing L ): y * z xx zz L y * L= x / head-on: crossing-angle: 22 slac-pub-8699 SuperKEKB more hourglass effect
19
B. Golob, Ljubljana Univ.Belle II Status 19Interplay work., CERN, Dec 2009 Preliminary KEKB Design KEKB Achieved (): with crab SuperKEKB High-Current Option SuperKEKB Nano-Beam Scheme y * (mm)(LER/HER) 10/10 6.5/5.9 (5.9/5.9) 3/60.24/0.37 x (nm) 18/1818(15)/2424/182.8/2.0 (%) 10.8-11/0.51.0/0.7 y ( m) 1.91.10.85/0.730.084/0.072 yy 0.052 0.108/0.056 (0.101/0.096) 0.3/0.510.09/0.09 z (mm) 4~ 75(LER)/3(HER)5 I beam (A)2.6/1.1 1.8/1.45 (1.62/1.15) 9.4/4.13.6/2.1 N bunches 5000~150050002119 Luminosity (10 34 cm -2 s -1 ) 1 1.76 (2.08) 5380 crossing-angle: 2 = 22 mrad 83 mrad asymmetry: 3.5 GeV/ 8 GeV 4 GeV / 7 Gev SuperKEKB more machine parameters
20
B. Golob, Ljubljana Univ.Belle II Status 20Interplay work., CERN, Dec 2009 In Coulomb scattering between particles in a bunch transverse momentum is transfered to longitudinal one (multiplied by ); if the longitudinal momentum transfer exceeds accelerator momentum acceptance particles are lost; beam current decreases exponentially: N bunch / x y z : particle density in bunch ( p/p 0 ) acc : momentum acceptance r C : orbit radius for large : increase ( p/p 0 ) acc ; this also reduces x y z but the overall effect on is positive H. Wiedemann, Particle Accelerator Physics, Springer effect more important for LER SuperKEKB more Touschek effect
21
B. Golob, Ljubljana Univ.Belle II Status 21Interplay work., CERN, Dec 2009 xx ( p/p 0 ) acc increasing ( x *, y *) increasing beam 0 dynamic aperture: high current option: - high operation costs - too low beam-beam parameter - CSR prevents squeezing the beam - difficult to find solution for IR with low enough * SuperKEKB more dynamic aperture, high current
22
B. Golob, Ljubljana Univ.Belle II Status 22Interplay work., CERN, Dec 2009 larger asymm.: larger boost, better relative decay time resolution, better continuum bkg. rejection smaller asymm.: more isotropic events, better hermeticity z = 180 m, =0.425 t =1.4 ps t-dependent: B J/ K S B K S D* D 0 , D 0 K + K - t-independent: B effective reduction of L for same sensitivity sBelle Design Group, KEK Report 2008-7 not including improved resol. of upgraded PXD+SVD! if ( z) improved by 10%-15% (t-dependent) improved by 5%-10% effective L dt: 10%-20% SuperKEKB more effect of energy asymmetry
23
B. Golob, Ljubljana Univ.Belle II Status 23Interplay work., CERN, Dec 2009 Belle II more
24
B. Golob, Ljubljana Univ.Belle II Status 24Interplay work., CERN, Dec 2009 p-channel FET on a completely depleted bulk A deep n-implant creates a potential minimum for electrons under the gate (“internal gate”) Signal electrons accumulate in the internal gate and modulate the transistor current (g q ~ 400 pA/e - ) Accumulated charge can be removed by a clear contact (“reset”) Invented in MPI Munich Fully depleted: → large signal, fast signal collection Low capacitance, internal amplification → low noise Transistor on only during readout: low power Complete clear no reset noise Depleted p-channel FET Belle II more DEPFET pixel
25
B. Golob, Ljubljana Univ.Belle II Status 25Interplay work., CERN, Dec 2009 Belle II DEPFET Collaboration : full member of Belle II coll. Belle II DEPFET pixel
26
B. Golob, Ljubljana Univ.Belle II Status 26Interplay work., CERN, Dec 2009 Overall geometry & support Ladder- Layout Mounting Local cooling Sensor & Electronics Services Readout DEPFET Switcher DCD wafers finished June 2010 4-5 months testing production starts January 2011 Belle config. tracking Belle II config. tracking Belle II more DEPFET pixel
27
B. Golob, Ljubljana Univ.Belle II Status 27Interplay work., CERN, Dec 2009 Belle II more SVD slanted detectors tests until June 2010 DSSD production until 2012
28
B. Golob, Ljubljana Univ.Belle II Status 28Interplay work., CERN, Dec 2009 t-dependent CPV: S CP (K s 0 ) = -0.10 ±0.31 ±0.07 A CP (K s 0 ) = -0.20 ±0.20 ±0.06 for m(K s 0 ) < 1.8 GeV (mainly K* ) B decay vtx from K s and IP; additional improvement with upgraded SVD; (S CP (K s 0 ))= 0.09 @ 5 ab -1 0.03 @ 50 ab -1 SM: S CP (K* ) (2m s /m b )sin2 1 0.04 Left-Right Symmetric Models: S CP (K* ) 0.67 sin2 1 0.5 in SM: helicity structure H eff b R →s L L m b or b L →s R R m s CPV in SM m s /m b Belle, PRD74, 111104 (2006), 535M BB D. Atwood et al., PRL79, 185 (1997) similar sensitivity for K s 0 (dilution from K* ) sBelle Design Group, KEK Report 2008-7 Belle II more vertexing, b s
29
B. Golob, Ljubljana Univ.Belle II Status 29Interplay work., CERN, Dec 2009 t-dependent CPV expectation: main syst. scales with luminosity +30% increase in K s acceptance with upgraded vertexing -10% decrease due to 10x higher background in upgraded ECL (S(K s 0 ))=0.09 @5 ab -1 0.03 @50 ab -1 (~SM value) EE current x10 background+upgrade equivalent to ~ 10% L loss MC B K s 0 Belle II more vertexing, b s
30
B. Golob, Ljubljana Univ.Belle II Status 30Interplay work., CERN, Dec 2009 photodetector options: (multichannel plate PMT): Hamamatsu SL10 27.5x27.5 mm 2, 4x4 ch Photonis 59x59 mm 2, 8x8 ch barrel: endcap: aerogel photodetector options: Hybrid Avalanche Photo Diode (Hamamatsu) (or MCP-PMT) Belle II more PID
31
B. Golob, Ljubljana Univ.Belle II Status 31Interplay work., CERN, Dec 2009 MC: B J/ , 3 , 0 (low energy ) 0.8 0.6 0.4 current bkg. x 10 +upgrade forward barrel current 0.8 0.6 0.4 effect of upgrade on full B recon. current realistic with 10x bkg. + upgrade Belle II more EM Calorimeter
32
B. Golob, Ljubljana Univ.Belle II Status 32Interplay work., CERN, Dec 2009 FCNC with lower hadronic uncertainties compared to b→ s ll Br(B →K* 0 )<3.4x10 -4 @90% C.L. similar method as B → full recon. B tag, K* 0 on signal side, signal in E ECL ; expected N sig =0.37 (Br=1.3x10 -5 ) N bkg =3.15 improvements assumed B tag : 20% (similar ECL performance, more inclusive + neutral modes) PID : 15% (30% for K* 0 →K )(barrel TOP + dE/dX); : 50% increase of (hadr. tag only) B tag → semil.: comparison for B → (both tag methods used) Belle, PRL99, 221802 (2007), 490 fb -1 3 significance @ 45 ab -1 G. Buchalla et al., PRD63, 014015 (2001) sBelle Design Group, KEK Report 2008-7 3 significance @ 8 ab -1 5 significance @ 25 ab -1 Belle II more ECL, B →K* 0
33
B. Golob, Ljubljana Univ.Belle II Status 33Interplay work., CERN, Dec 2009 Central Drift Chamber cell size inner-most layer operating well @200 kHz; if 20x bkg. for other layers no problem 10 kHz smaller cells (5x5 mm 2 ) installed in 2003 in two inner layers; drift time decreased 100 ns; expected performance (20x bkg w.r.t. Belle): B J/ K S : +2% E +6% B D* + D* - : +30% E +11% read-out: dead time 800 ns – 2200 ns 200 ns Belle II more CDC
34
B. Golob, Ljubljana Univ.Belle II Status 34Interplay work., CERN, Dec 2009 endcap: scintillators, two orthogonal directions in one super-layer, WLS read-out avalanche photo-diode in Geiger mode (GAPD) super-layer: iron Al frame x-strips y-strips single strip: Belle II more KLM polystyrene with 1.5% PTP and 0.01% POPOP wavelength shifter GAPD diffusion reflector (TiO 2 )
35
B. Golob, Ljubljana Univ.Belle II Status 35Interplay work., CERN, Dec 2009 Belle II more physics sensitivity preliminary (blue text are just edits, no special emphasize)
36
B. Golob, Ljubljana Univ.Belle II Status 36Interplay work., CERN, Dec 2009 Belle II more physics sensitivity preliminary (blue text are just edits, no special emphasize)
37
B. Golob, Ljubljana Univ.Belle II Status 37Interplay work., CERN, Dec 2009 Belle II more physics sensitivity preliminary (blue text are just edits, no special emphasize)
38
B. Golob, Ljubljana Univ.Belle II Status 38Interplay work., CERN, Dec 2009 Belle II more example scenario Possibilities of Super B-factory: - can identify nature of NP - example expected sensitivity of SuperBelle 5 ab -1 particle mass spectra similar
39
B. Golob, Ljubljana Univ.Belle II Status 39Interplay work., CERN, Dec 2009 Belle II more b sqq Belle, arXiv:0811.3665, 657M BBbar B 0 →K s quasy two-body states t-dependent Dalitz analyses measure 1 eff associated with individual amplitudes ( K s, f 0 K s,...) f 0 (980) region SS Belle II, 50 ab -1 range allowed with current HFAG central values determine possible new phase with th (current)
40
B. Golob, Ljubljana Univ.Belle II Status 40Interplay work., CERN, Dec 2009 Belle II more B K B →K sum rule A(K 0 + )=0.009 ±0.025 A(K + 0 )=0.050 ±0.025 A(K + - )=-0.098 ±0.012 A(K 0 0 )=-0.01 ±0.10 HFAG, ICHEP08 A(K 0 0 ) A(K 0 + ) sum rule A(K + 0 ) measured (HFAG) expected (sum rule) M. Gronau, PLB627, 82 (2005); D. Atwood, A. Soni, PRD58, 036005 (1998)
41
B. Golob, Ljubljana Univ.Belle II Status 41Interplay work., CERN, Dec 2009 Belle II more B K B →K sum rule B →K 0 : main syst. uncertainty from tag side interf.; can be reduced by measuring t with semil. B sig decays B → K 0 +, K + 0 : full systematics treated as non-scaling A(K 0 0 ) A(K 0 + ) sum rule A(K + 0 ) Belle, 50 ab -1 deviation may be significant already with 10 ab -1
42
B. Golob, Ljubljana Univ.Belle II Status 42Interplay work., CERN, Dec 2009 Belle II more B 5 discovery from B → H ± discovery region: for 50 ab -1 similar results arise from expectations for semileptonic B → D / SM indpendent of m l in type-II 2HDM deviations in R SUSY; B → : 4.3 ab -1 for 5 discovery (SM Br); tan M (H ± ) [GeV] 100 60 20 800 600 400 200 currently excluded @99% C.L. LHC discovery potential, 100 fb -1 LHC discovery potential, 30 fb -1 (+ effect of trigger simul., mentioned to increase the discovery limits in tan by 25%) D.P. Roy, cHarged2006 LHC H ± → ; exploting helicity effects
43
B. Golob, Ljubljana Univ.Belle II Status 43Interplay work., CERN, Dec 2009 Belle II more B s Inclusive measurement E spectrum Br(B →X s ) consistent with 0 above B decay threshold m b 1S /2~2.3 GeV last uncertainty due to boost; largest system.: corr. factors in off-data subtraction ; assumed scaling bkg. ’s from B (other than 0, ) -> assumed non-scaling (0.24x10 -4 ), rest of syst. scaling deconvolution of E (E meas → E true ; using radiative di-muon evts); boost to B rest frame; b →d contrib. (4%); M. Misiak et al., PRL98, 022002 (2007) Belle, 50 ab -1 + existing meas. Belle, 0.6 ab -1 Belle, 50 ab -1 + existing meas. HFAG, ICHEP08 95% C.L. lower limit on m(H ± ), all tan L.L. can get as high as 500 GeV (Br) Br Belle, arXiv:0804.1580,605 fb -1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.