Download presentation
Presentation is loading. Please wait.
Published byChristiana Long Modified over 9 years ago
1
Direct Numerical Simulation of Particle Settling in Model Estuaries R. Henniger (1), L. Kleiser (1), E. Meiburg (2) (1) Institute of Fluid Dynamics, ETH Zurich (2) Department of Mechanical Engineering, UCSB TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAA
2
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Outline Introduction / motivation Computational setup flow configuration governing equations and physical parameters simulation code Results freshwater / saltwater mixing particle settling Conclusions and outlook 2
3
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Estuary mouth light fresh-water heavy salt-water Suspended particles e.g. sediment or pollutants transport out to the ocean particles settle and deposit Other influences temperature profile Coriolis effect, tide, … Focus of the present study: basic investigation of freshwater / saltwater mixing particle transport, particle settling and particle deposition Introduction 3 Magdalena River (Colombia)
4
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Freshwater / saltwater mixing Typically hypopycnal inflow (Super-)critical? Convective mixing, enhanced by turbulence in river Kelvin-Helmholtz or Holmboe waves 4 salty freshwater salt wedge salty
5
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle load hypopycnal: hyperpycnal: 5 salty freshwater + particles
6
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle transport (1) Surface plume (2) (Enhanced) particle settling flocculation? turbulence enhanced settling? (3) Bottom propagating turbidity current (1) (2) (3) 6
7
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Example: Yellow River (from http://www.grid.unep.ch/activities/global_change/atlas/images/YellowRiver.jpg) 7
8
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Motivation Particle transport mechanisms surface freshwater current particle settling undersea gravity currents Consequences spillage of ocean bed / continental shelf environmental pollution disruption of infrastructure State of research many quantitative field observations few laboratory experiments little evidence about mechanisms Focus of the present study: basic investigation of freshwater / saltwater mixing particle transport, particle settling and particle deposition 8
9
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Model estuary configuration symmetry planes inflow convective outflow salt sponge 9
10
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Governing equations, non-dimensional Incompressible Navier-Stokes and concentration transport equations (in Boussinesq regime) Reynolds number: Schmidt number: Richardson number: Particle settling velocity: 10
11
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Physical parameters realitylaboratorysimulation Re 10 5 -10 7 10 3 -10 4 1500 Sc sal 500-3000 1 Sc part > Sc sal 2 Ri sal 0.5-1 0.5 Ri part < 0.05 0.05 -u s / U < 10 -2 0.01-0.02 particle plume extent extent turbulence turbulence “sharpness” of interfaces interfaces 11 particle load loading sub-/supercritical flow inertial forces
12
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Newly developed simulation code (summary) Incompressible flows + active scalars Discretization compact finite differences in space explicit or semi-implicit time integration Massively parallel platform 3D domain decomposition (>95% parallel efficiency) sustained 16% peak performance on Cray XT scalability tested to up to 8000 cores and 17 billion grid points Validation convergence orders in time and space convergence properties of iterative solvers temporal and spatial growth of eigenmodes -channel flow -shear layer flows with passive scalar transitional and turbulent channel flow (vs. P. Schlatter) particle-driven gravity current (vs. F. Necker) parallel scaling properties 12
13
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Results: freshwater / saltwater mixing 13
14
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Freshwater current salt sponge internal waves Kelvin-Helmholtz waves 14 c sal = 0.75
15
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Group velocity of internal waves (measured with potential energy at y = 0 ) 15
16
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Streamlines on water surface 16
17
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Sub-/supercritical flow kinetic vs. buoyant forces measured with bulk Richardson number 17
18
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Interface stability shear stress vs. density difference measured with gradient Richardson number 18
19
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Results: particle settling 19
20
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle settling Three different settling velocities u s / U = -0.02, -0.015, -0.01 Qualitative agreement with laboratory experiments? Maxworthy (JFM, 1999) Parsons et al. (Sedimentology, 2001) McCool & Parsons (Cont. Shelf Res., 2004) Open questions extent of particle plume? particle settling modes (transient, steady state)? effective settling velocity? deposit profile? 20
21
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle plume t = 300 t = 400 t = 450 t = 600 u s / U = -0.02, c part = 0.1 21 x1x1 x1x1 x1x1 x1x1 x2x2 x2x2
22
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Convective particle settling t = 300 t = 350 t = 400 t = 600 u s / U = -0.02 22 x 1 = 26 x 2 = 5 x1x1 x1x1 x1x1 x1x1 x2x2 x2x2 x2x2 x2x2 x3x3 x3x3 x3x3 x3x3
23
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle mass 23
24
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Potential energy of particles 24
25
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Effective particle settling velocity 25
26
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle Deposit u s /U = -0.020, t = 710 26
27
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle Deposit u s /U = -0.015, t = 920 27
28
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle Deposit u s /U = -0.010, t = 1040 28
29
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Conclusions Definition of simulation setup parameters inflow boundary conditions sponge zones, etc. Results: Basic effects compare well with laboratory experiments freshwater-brine mixing finger convection enhanced convective particle settling Results obtained at moderate Re and Sc, accessible to DNS 29
30
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Outlook Further increase of Re and Sc with LES in the future Implemented LES models: ADM-RT model (filter model) (HPF) Smagorinsky (upwinding) Validation of LES to be completed Further option: more complex domains e.g. by orthogonal curvilinear grids immersed boundary method (immersed interface method) 30
31
05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Appendix 31
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.