Download presentation
Presentation is loading. Please wait.
Published byBrett Blankenship Modified over 9 years ago
1
Prokaryotes Or 100 Trillion Friends That You Didn’t Know You Had
2
The Human Microbiome We are actually a giant ecosystem of microbes We are actually a giant ecosystem of microbes Prokaryotes comprise between 1-3% of the mass of a human body Prokaryotes comprise between 1-3% of the mass of a human body - up to 6lbs of a 200 lb person can be microbes - up to 6lbs of a 200 lb person can be microbes
3
Classification: Some Old, Some New Biologists have typically classified living things into 5 large groups called kingdoms Biologists have typically classified living things into 5 large groups called kingdoms - Monera, Protista, Fungi, Plantae & Animalia - Monera, Protista, Fungi, Plantae & Animalia Then biologists discovered organisms called Archea – they are prokaryotic organisms but aren’t bacteria. Then biologists discovered organisms called Archea – they are prokaryotic organisms but aren’t bacteria. - What to do? - What to do?
4
The Challenge of Archea Archea present a problem, they a are prokaryotes Archea present a problem, they a are prokaryotes – They have no nucleus or organelles – They have no nucleus or organelles They also share traits with eukaryotes They also share traits with eukaryotes - similarities in DNA and synthesis - similarities in DNA and synthesis They have traits unique to themselves They have traits unique to themselves - cell membrane lipids, ability to - cell membrane lipids, ability to survive extremely high temperature survive extremely high temperature
5
Enter the Domain System of Classification Scientists divided living things into 3 Supergroups called domains these consist of Bacteria, Archea and Eukarya Scientists divided living things into 3 Supergroups called domains these consist of Bacteria, Archea and Eukarya
6
Archea can be Extremophiles Some species of archea can be found in environments so extreme, that nothing else lives there- extreme temps, extreme pH, extremely salty etc… Some species of archea can be found in environments so extreme, that nothing else lives there- extreme temps, extreme pH, extremely salty etc…
7
Bacteria Earth’s oldest life forms Earth’s oldest life forms – between 3.5 and 3.8 billion years old Most abundant life form – up to 2.5 billion individual bacteria in 1 gram of fertile soil Most abundant life form – up to 2.5 billion individual bacteria in 1 gram of fertile soil Very adaptable – found in all of Earth’s Very adaptable – found in all of Earth’s ecosystems ecosystems
8
Bacteria Characteristics Unicellular Unicellular Circular DNA Circular DNA No organelles No organelles 1/10 th the size of eukaryotic cells 1/10 th the size of eukaryotic cells Flagella-long hair-like structure used for movement Flagella-long hair-like structure used for movement Reproduce asexually –Binary Fission Reproduce asexually –Binary Fission
9
Bacterial Shapes 3 main shapes 3 main shapes - coccus – sphere - coccus – sphere - bacillus – rods - bacillus – rods - spirillum - spiral - spirillum - spiral
10
Bacterial Characteristics Metabolic diversity – Bacteria can produce energy in a variety of circumstances Metabolic diversity – Bacteria can produce energy in a variety of circumstances autotroph – (self-feeding) – some bacteria can produce their own food - some use photosynthesis – get energy from light - some use photosynthesis – get energy from light - some use chemosynthesis – get energy from - some use chemosynthesis – get energy from chemicals chemicals Heterotroph - (other feeding) – many bacteria Heterotroph - (other feeding) – many bacteria are unable to produce their own food and are required to eat other things are unable to produce their own food and are required to eat other things
11
Bacterial Characteristics: Metabolic diversity continued obligate aerobe – like us these bacteria need oxygen obligate anaerobe - these bacteria need to be in an oxygen free environment – human gut facultative anaerobe – these bacteria can live in either an oxygen or oxygen free environment
12
Bacterial Structure Cell Wall Cell Membrane Pilus chromosome plasmid flagellum nucleoid ribosome cytoplasm capsule
13
Bacterial Structure: Cell Wall Made of peptidoglycan – a combination of protein and polysaccharides Made of peptidoglycan – a combination of protein and polysaccharides Some bacteria called Gram negative bacteria have an additional layer of membrane that contains lipopolysaccharide Some bacteria called Gram negative bacteria have an additional layer of membrane that contains lipopolysaccharide - this extra layer inhibits the uptake of antibiotics – protecting - this extra layer inhibits the uptake of antibiotics – protecting the bacteria the bacteria cell membrane cell wall cell membrane Outer membrane lipopolysaccharide cell wall
14
Gram + vs. Gram - Absorb stain appear purple Don’t absorb stain appear pink The type of cell wall is used by doctors to help diagnose disease The bacteria are stained with a special stain called Gram stain Bacteria without the extra membrane, appear purple. These are Gram positive (Gram +) bacteria Bacteria with the extra membrane appear pink. These are Gram negative ( Gram -) bacteria
15
Bacterial Structure continued Pili – hairlike structures usually found Pili – hairlike structures usually found in Gram neg. bacteria. Help the bacteria stick to surfaces. in Gram neg. bacteria. Help the bacteria stick to surfaces. Also forms conjugation bridge Chromosome – a single loop of DNA Chromosome – a single loop of DNA that is folded on itself that is folded on itself - controls the cell’s function - controls the cell’s function Nucleoid – the region of the cytoplasm Nucleoid – the region of the cytoplasm where the DNA is found where the DNA is found Plasmid – an accessory loop of DNA – small contains only a few genes - can be responsible for: conjugation, antibiotic resistance, unique metabolic properties – like the ability to use hydrocarbons Plasmid – an accessory loop of DNA – small contains only a few genes - can be responsible for: conjugation, antibiotic resistance, unique metabolic properties – like the ability to use hydrocarbons Capsule – found outside some bacteria stores nutrients and protects the bacteria from changing environmental conditions Capsule – found outside some bacteria stores nutrients and protects the bacteria from changing environmental conditions
16
Reproduction - Binary Fission Bacterial cells undergoing binary fission Bacterial cells undergoing binary fission
17
Reproduction - Binary Fission Asexual reproduction Asexual reproduction - offspring are genetically - offspring are genetically identical to parent – no identical to parent – no new genetic combinations new genetic combinations - under ideal conditions - under ideal conditions can occur every 20 min can occur every 20 min - creates large numbers - creates large numbers of bacteria in a short of bacteria in a short time time
18
Each spot represents Each spot represents a single bacterial a single bacterial cell that reproduced cell that reproduced by binary fission to by binary fission to produce millions of produce millions of genetically identical genetically identical cells. cells. Genetically identical, Genetically identical, good or bad? good or bad?
19
Exchanging Genetic Information Bacterial cells need to be able to exchange genetic information Bacterial cells need to be able to exchange genetic information - creates new genetic combinations which increases the ability of the bacteria to survive - creates new genetic combinations which increases the ability of the bacteria to survive Bacteria have 3 methods for exchanging DNA Bacteria have 3 methods for exchanging DNA -Transduction – viruses carry DNA from one bacterial cell to another -Transduction – viruses carry DNA from one bacterial cell to another -Transformation – bacteria can absorb “naked” DNA released by dead bacteria from the environment -Transformation – bacteria can absorb “naked” DNA released by dead bacteria from the environment - Conjugation – two bacteria join at a conjugation bridge, one bacteria passes on a copy of its plasmid or chromosome - Conjugation – two bacteria join at a conjugation bridge, one bacteria passes on a copy of its plasmid or chromosome
20
Exchanging Genetic Information
21
Transduction – DNA is carried from one bacteria to another by a virus
22
Transformation: Bacteria absorb “naked” DNA from the environment
23
Conjugation
24
Conjugation- one cell passes a copy of its plasmid or chromosome to another Donor Cell Recipient Cell A special pilus forms a connection called a conjugation bridge between 2 bacterial cells PlasmidConjugation bridge The donor cell copies its plasmid or chromosome and passes the copy through the conjugation bridge Cells separate
25
Bacteria Play Important Roles in Ecosystems Decomposers Decomposers – recycle dead organisms releasing their nutrients back to the environment for use by other organisms – SPONCH – recycle dead organisms releasing their nutrients back to the environment for use by other organisms – SPONCH Without decomposers, Without decomposers, the elements on earth the elements on earth would have remained would have remained locked up in dead organisms and life would have ceased locked up in dead organisms and life would have ceased
26
Bacterial Roles: Nitrogen Fixation some bacteria contain enzymes which allow them to convert (or fix) nitrogen from the air into a useable form some bacteria contain enzymes which allow them to convert (or fix) nitrogen from the air into a useable form - they are nitrogen fixing bacteria - they are nitrogen fixing bacteria - Why do living things use nitrogen?
27
Bacterial Roles: Producers In some ecosystems In some ecosystems chemosynthetic and chemosynthetic and photosynthetic bacteria photosynthetic bacteria serve as the basis of serve as the basis of the food chain the food chain – chemosynthetic bacteria in deep ocean vents convert hydrogen sulfide (H 2 S) gas into energy - cyanobacteria are photosynthetic bacteria - cyanobacteria are photosynthetic bacteria which act as producers in many aquatic which act as producers in many aquatic ecosystems ecosystems
28
Bacterial Roles: Symbiotic Bacteria Many bacteria live in or on other organisms (including humans) and aid their host - some live in the gut of herbivores helping to digest cellulose - some live in the gut of herbivores helping to digest cellulose - bacteria in the gut of humans - bacteria in the gut of humans aid digestion and produce vitamins - bacteria on skin and in body - bacteria on skin and in body openings help prevent infection by harmful organisms
29
Bacterial Roles: Pathogenic Bacteria Pathogens are organisms that cause disease Pathogens are organisms that cause disease - only a small portion of bacteria are pathogens - most bacteria diseases are caused by toxins released by the bacteria released by the bacteria - these toxins: - these toxins: - poison cells and damage tissue - poison cells and damage tissue - interfere with cell signaling - interfere with cell signaling - over-stimulate cells causing them to malfunction - over-stimulate cells causing them to malfunction
30
Pathogenic Bacteria: Biofilms Some bacteria can form a biofilm – a matrix made of polysaccharide Some bacteria can form a biofilm – a matrix made of polysaccharide - once formed, the matrix traps other bacteria - once formed, the matrix traps other bacteria - the biofilm protects the bacteria, making it hard to kill them - the biofilm protects the bacteria, making it hard to kill them
31
Antibiotics Antibiotics are chemicals which either kill bacteria or prevent their growth and reproduction Antibiotics are chemicals which either kill bacteria or prevent their growth and reproduction Bacteria and other microbes produce antibiotics to reduce competition from other organisms Bacteria and other microbes produce antibiotics to reduce competition from other organisms Penicillin was the first to be use to fight disease Penicillin was the first to be use to fight disease - discovered accidently by Alexander Fleming in 1928 Two scientists Walter Florey and Ernst Chain determined Two scientists Walter Florey and Ernst Chain determined how to use penicillin to how to use penicillin to treat disease in 1939. treat disease in 1939. The discovery of The discovery of antibiotics revolutionized antibiotics revolutionized the treatment the treatment of disease of disease
32
Antibiotic Action Antibiotics effect bacteria, but not eukaryotic cells Antibiotics effect bacteria, but not eukaryotic cells Antibiotics attack bacteria in 5 ways Antibiotics attack bacteria in 5 ways - some damage the cell walls or prevent new cell wall from forming - some damage the cell membrane - some damage the cell membrane - some prevent protein synthesis - some prevent protein synthesis - some prevent DNA from being copied - some prevent DNA from being copied - some interfere with bacterial metabolism - some interfere with bacterial metabolism
33
Antibiotic Resistance Some bacteria have developed a resistance to the effect Some bacteria have developed a resistance to the effect of some antibiotics of some antibiotics - the number of resistant bacteria is growing - the number of resistant bacteria is growing The problem is increased by overuse and misuse of antibiotics The problem is increased by overuse and misuse of antibiotics - use of antibiotics to treat viral infections – antibiotics don’t effect viruses - use of antibiotics to treat viral infections – antibiotics don’t effect viruses - the use of antibiotics in livestock (cattle, chickens, pigs) - the use of antibiotics in livestock (cattle, chickens, pigs) antibiotics show up in the meat and milk antibiotics show up in the meat and milk - people take the antibiotics until they feel better, but stop before all of the bacteria are destroyed - people take the antibiotics until they feel better, but stop before all of the bacteria are destroyed - this kills the most susceptible bacteria, but leaves the more resistant bacteria - this kills the most susceptible bacteria, but leaves the more resistant bacteria
34
Vocabulary Microbiome Archea autotroph pili heterotroph nucleoid peptidoglycan capsule plasmid conjugation bridge Gram -obligate aerobe Gram +obligate anaerobe binary fissionfacultative anaerobe conjugationnitrogen fixing bacteria transductioncyanobacteria transformationpathogens biofilm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.