Download presentation
1
Scattering and diffraction
Based on chapert 4 + some crystallography
2
Repetition and continuation
The probability of scattering is described in terms of either an “interaction cross-section” (σ) or a mean free path (λ). Differential scattering cross section (dσ/dΩ). i.e. the probability for scattering in a solid angle dΩ 100keV: σelastic = ~10-22 m2 σinelastic = ~ m2 Is almost always the dominant component of the total scattering.
3
Scattering Elastic Inelastic Electron-nucleon Electron-nucleon
High angle scattering Rutherford scattering Electron-electron Low angle scattering Inelastic Electron-nucleon Bremsstrahlung Electron-electron X-rays SE Plasmons Electron-atoms Phonons
4
Inelastic scattering electron-nucleus interaction
Kramers cross section To predict bremsstrahlung production N(E)=KZ(E0 – E)/E, N(E): number of bremsstrahlung photons, K: konstant E<~2 keV is absorbed in the specimen and detector
5
Ineleastic scattering electron-electron interaction
σ (m2) Cross sections in Al assuming θ~0o 10-21 10-23 10-25 P E L K SE Incident beam energy (keV)
6
Electron transitions and X-ray notation
K, L, M, N, O shells Subshell L1, L2,… What is the effect of different Ionization cross sections? Given ”weights” within a family
7
Inelastic scattering → Ionization
Total ionization cross section (Bethe -1930): ns: number of electrons in the ionized subshell bs and cs: constants for that shell - The differential form show that the scattered electron deviate through very small angles (<~10 mrad). The resultant characteristic X-ray is a spherical wave emitted uniformly over 4π sr Ec: Critical ionization energy -Shell and Z dependent (Measured by EELS) -with relativistic correction (Williams -1933): Relativistic factor β=v/c
8
Critical ionization energy
Ec is generally <20 keV
9
Difference between Ec and the X-ray energy
10
Cascade to ground An ionized atom returns to ground state via a cascade of transitions.
11
Fluorescence yield, ω Probability of X-ray versus Auger electrons
12
Auger electrons E~few hundred eV- a few keV
and strongly absorbed in the specimen.
13
Differential cross section for plasmon exitation
a0: Bohr radius, θE=EP/2E0, Ep~15-20 eV σ→ 0, θ> 10 mrad
14
Phonon scattering Scatter electrons to 5- 15 mrad
Diffuse background in diffraction pattern Energy loss < 0.1 eV Scattering increases with Z (~ Z3/2)
15
Beam damage Effect of HT? Three principal forms Radiolysis
Inelastic scattering breaks chemical bonds Knock-on damage or sputtering Displacement of atoms from the crystal lattice → point defects Heating Source of damage to polymers and biological tissue. Electron dose : Charge density (C/m2) hitting the specimen
16
Specimen heating Depends on thermal conductivety of the specimen and beam current
17
Knock-on damage Directly related to the incident beam energy
Primary way metals are damaged Frenkel pair Bond strength is a factor Related to the displacement energy Threshold energy for dispacement of an atoms with atomic weight A:
18
Maximum transferable energy – Dispalcements threshold energy
If more than the threshold energy is transfered to an atom it will dispalce from its site
19
Elastic scattering-Rutherford
20
Elastic scattering-Rutherford
21
Elastic scattering- small angles (<~3o)
Rutherford cross section can not be used Scattering-factor approach is complementary Wave nature of electrons Amplitudes: Atomic scattering factor f(θ) Structure factor F(θ)
22
Lattice properties of crystals
The crystal structure is described by specifying a repeating element and its translational periodicity The repeating element (usually consisting of many atoms) is replaced by a lattice point and all lattice points have the same atomic environments. Point lattice Repeating element in the example Lattice point Crystals have a periodic internal structure
23
Repeting element What is the repeting element in example 1-3? 1 2 3
What is the repeting element in example 1-3? Hvordan kan vi beskrive den periodiske strukturen til krystaller? -ved å beskrive den minste rep.enheten. -rep.enhet. kalles enhetscellen For eks. 1-3 hva er enhetscellen? -Eks. viser utsnitt fra tenkte kryst. i tre dim. - ant. atomslag -atom i forkant eksisterer også i bakkant -det er ingen ”grønne” atomer i senter av utsnitt
24
Repeting element 1 2 3 Hvor mange atomer er det i en enhetscellen?
Enkel! Hvor mange atomer er det i en enhetscellen? Brukes til å finne tetthet til strukturen når V kjent V=a*a*a (Kubisk), a lik lengden av en sideflate Hva er enhetscellen/Hvor stor er den i eks. 2?
25
Enhetscellen: repetisjonsenheten
Valg av origo er fritt! Det er like riktig å beskrive strukturen ved å ta utg.pkt. i et annet origo. Først rødt atom i origo, nå blått. For eks. 3 kan det se slik ut….. Valgfritt origo!
26
Point lattice repeting element unit cell
Dette danner et gitter. Eksempel Gitterpunkt deles med nærliggende enhetsceller på samme måte som atomene. Kittre med et gitterpunkt pr. enhetscelle kalles primitivt. Eks. på to Primitivt kubbisk gitter, m et og to atomer pr. gitterpunkt. Flatesentrert kubisk gitter Eksempler på hva vi kaller for Baravais gitre Forslag på gruppe i enhetscelle i eksempel 3 til neste gruppetime. Vet aksesystem, og at det er 16 atomer i enhetscellen. Atoms and lattice points situated on corners, faces and edges are shared with neighbouring cells.
27
Unit cell Elementary unit of volume!
b α β γ - Defined by three non planar lattice vectors: a, b and c -or by the length of the vectors a, b and c and the angles between them (alpha, beta, gamma). The origin of the unit cells can be described by a translation vector t: t=ua + vb + wc The atom position within the unit cell can be described by the vector r: r = xa + yb + zc
28
Axial systems The point lattices can be described by 7 axial systems (coordinate systems) x y z a b c α γ β Axial system Axes Angles Triclinic a≠b≠c α≠β≠γ≠90o Monoclinic α=γ=90o ≠ β Orthorombic α= β=γ=90o Tetragonal a=b≠c Cubic a=b=c Hexagonal a1=a2=a3≠c α= β=90o γ=120o Rhombohedral α= β=γ ≠ 90o Enhetscellen defineres av tre ikke planære vektorer a,b og c som er aksene i enhetscellen. -kan også beskrives ved lengdene til a, b og c samt vinklene mellom dem. Vektorene definerer et aksesystem. I eksempel 1 var…, 2 var… Dette er eksempler på hva vi kaller kubisk aksesystem I eks. 3 var var aksene a=b men ikke lik c, vinkl. 90 gr.…Dette er et eksempel på hva vi kaller et tetragonalt aksesystem. (Kommer tilbake til andre mulige aksesyst.) Gjentakende like grupper av atomer i enhetscellen kan erstattes med gitterpunkt. 1 eller flere atomer pr. pkt.
29
Bravais lattice The point lattices can be described
by 14 different Bravais lattices Hermann and Mauguin symboler: P (primitiv) F (face centred) I (body centred) A, B, C (bace or end centred) R (rhombohedral)
30
Lattice planes Miller indexing system
z x c/l a/h b/k Miller indexing system Miller indices (hkl) of a plane is found from the interception of the plane with the unit cell axis (a/h, b/k, c/l). The reciprocal of the interceptions are rationalized if necessary to avoid fraction numbers of (h k l) and 1/∞ = 0 Planes are often described by their normal (hkl) one single set of parallel planes {hkl} equivalent planes Z Y X (110) Crystals are described in the axial system of their unit cell Når vi skal beskrive posisjonene til gitterpunkter og atomer bruker vi posisjonsvektorer av typen-……. Hvor a, b og c er enhetsvektorene I de ulike krystall systmene, u, v, w er lengden langs hver av disse vektorene. Hva ville uvw være for et atom på en sideflate? Plan I enhetcelle kan angiv ved normalen til planet eller ved Miller-indeksene hkl Z Y X (010) (001) (100) (111) Z Y X
31
Hexagonal axial system
a1=a2=a3 γ = 120o a2 a1 a3 (hkil) h + k + i = 0
32
Directions The indices of directions
(u, v and w) can be found from the components of the vector in the axial system a, b, c. The indices are scaled so that all are integers and as small as possible Notation [uvw] one single direction or zone axis <uvw> geometrical equivalent directions [hkl] is normal to the (hkl) plane in cubic axial systems ua a b x z c y vb wc [uvw]
33
Determination of the Bravais-lattice of an unknown crystalline phase
50 nm Tilting series around common axis
34
Determination of the Bravais-lattice of an unknown crystalline phase
Tilting series around a dens row of reflections in the reciprocal space 50 nm Positions of the reflections in the reciprocal space
35
Bravais-lattice and cell parameters
100 110 111 010 011 001 101 [011] [100] [101] d = L λ / R From the tilt series we find that the unknown phase has a primitive orthorhombic Bravias-lattice with cell parameters: a= 6,04 Å, b= 7.94 Å og c=8.66 Å α= β= γ= 90o 6.04 Å 7.94 Å 8.66 Å
36
Resiprocal lattice Important for interpretation of ED patterns
Defined by the vectors a*, b* and c* which satisfy the relations: a*.a=b*.b=c*.c= and a*.b=b*.c=c*.a=a*.c=……..=0 Solution: a* is normal to the plane containing b and c etc. Unless a is normal to b and c, a* is not parallel to a. V: Volume of the unit cell V=a.(bxc)=b.(cxa)=c.(axb) Orthogonal axes: a* = 1/IaI, b*=1/IbI, c*=1/IcI
37
Reciprocal vectors, planar distances
The resiprocal vector is normal to the plane (hkl). and the spacing between the (hkl) planes is given by Convince your self ! What is the dot product beteen the normal to a (hkl) plane with a vector In the (hkl) plane? Planar distance (d-value) between planes {hkl} in a cubic crystal with lattice parameter a: Unit normal vector: n= ghkl/IghklI
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.