Download presentation
Presentation is loading. Please wait.
Published byChristiana Elliott Modified over 9 years ago
1
RB Nusselt number, TC torque, pipe friction Analogies between thermal convection and shear flows by Bruno Eckhardt, Detlef Lohse, SGn Philipps-University Marburg and University of Twente
2
data: cryogenic helium approximate power law only exponent varies with Ra: β(Ra) β β β
3
G. Ahlers, SGn, D. Lohse Physik Journal 1 (2002) Nr2, 31-37 Data: acetone, Pr = 4.0 (10 5 <Ra<10 10 ) Γ = 2 Γ = 1 Γ = 1/2
4
Physical origin of variable exponent Varying weight of BL and bulk
5
Variable exponent scaling in convective transport
6
Funfschilling, Ahlers, et al. JFM 536, 145 (2005)
7
Very large Ra scaling
8
Nu versus Pr G. Ahlers et al., PRL 84, 4357 (2000) ; PRL 86, 3320 (2001) K.-Q. Xia, S. Lam, S.-Q. Zhou, PRL 88, 064501 (2002)
9
Conditions for „thin“ BLs: d > 1 (2π+1) -1 = 0.14 > σ(η) > 1 σ(η) = (r a /r g ) 4 = [2 -1 (1+η)/ √η ] 4 η = r 1 / r 2 = 0.83 M. Couette, 1890 G.I. Taylor, 1923
10
Torque on inner cylinder Kinematic torque independent of, of, if Experimentally:
11
Torque 2πG versus R 1 in TC Lewis and Swinney, PRE 59, 5457 (1999) r 1 = 16 cm, r 2 = 22 cm, η = 0.724 l = 69.4cm, Γ = 11.4 8 vortex state R 1 = (r 1 ω 1 d) / ν log-law 2π2π G ~ R 1 α
12
Reduced TC torque data, variable exponent power law, log-law B.Eckhardt, SGn, D.Lohse, 2006
13
u φ -profiles measured by Fritz Wendt 1933 r 2 = 14.70cm, l = 40cm, Γ = 8.5 / 18 / 42 r 1 = 10.00cm / 12.50cm / 13.75cm η = 0.68 / 0.85 / 0.94 R 1 =8.47 ·10 4 4.95 ·10 4 2.35 ·10 4 N ω =M 1 /M lam ≈ 52 ≈ 37 ≈ 21 R w ≈ 2 670 ≈ 1 580 ≈ 820 δ/d ≈ 1 / 100 ≈ 1 / 80 ≈ 1 / 58 ○ ○ ○ -180 -225 -248
14
Exact analogies between RB, TC, Pipe ► ► ►,Ta=σ(r a ω 1 d/ν) 2 σ=[2 -1 (1+η)/√η ] 4
15
B.Eckhardt, SGn, D.Lohse, 2006 Torque 2πG versus R 1 Reduced torque data variable exponent log-law
16
variable exponent log-law
17
R w ~ R 1 1-ξ ξ ≈ 0.10-0.05 Wind = u r -amplitude increases less than control parameter R 1 ~u φ friction factor f or c f
18
η dependence of N ω r 1 /r 2 = η = 0.500 0.680 0.850 0.935 Data Δ 0.935 ○ 0.850 □ 0.680 Fritz Wendt, Ingenieurs-Archiv 4, 577-595 (1933) (η LS = 0.724)
19
Skin friction coefficient λ = 4 c f from Hermann Schlichting, Grenzschichttheorie, Fig.20.1
20
Friction factor pipe flow B.Eckhardt,SGn,D.Lohse, 2006 data variable exponent log-law
21
Summary 1. Exact analogies between RB, TC, Pipe quantities Nu = Q/Q lam, M 1 /M 1,lam, Δp/Δp lam or c f Navier-Stokes based 2. Variable exponent power laws M 1 ~ R 1 α with α(R 1 ) etc due to varying weights of BLs relative to bulk 3. Wind BL of Prandtl type, width ~ 1/√Re w, time dependent but not turbulent, explicit scale L transport BL width ~ 1/Nu 4. N, N ω, N u as well as ε w decomposed into BL and bulk contributions and modeled in terms of Re w 5. Exact relations between transport currents N and dissipation rates ε w = ε – ε lam : ε w = Pr -2 Ra (Nu–1), = σ -2 Ta (N ω -1), = 2Re 2 (Nu-1) 6. Perspectives: Verify/improve by higher experimental precision. Explain very large Ra or R 1 behaviour, very small η. Measure/calculate profiles ω(r),u r,u z, etc and N‘s, ε w ‘s. Determine normalized correlations/fit parameters c i. Include non-Oberbeck-Boussinesque or compressibility.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.