Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Objectives Define work and power.

Similar presentations


Presentation on theme: "Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Objectives Define work and power."— Presentation transcript:

1 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Objectives Define work and power. Calculate the work done on an object and the rate at which work is done. Use the concept of mechanical advantage to explain how machines make doing work easier. Calculate the mechanical advantage of various machines. Chapter 12

2 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Bellringer In your study of motion, you have learned that forces can cause motion. But in some cases, a force that is applied is balanced by another opposite force, and there is no net motion as a result. Look at the following illustrations, and identify the forces and motion in each one. (See illustrations on following slide.) 1. In one drawing, no motion is likely to occur. Which drawing is it? 2. Describe the forces that are acting in this diagram. If the person exerts slightly more force, what happens to the opposite force? Does it increase to match the new force of the person, stay the same, or decrease? Chapter 12

3 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Bellringer, continued Section 1 Work, Power, and Machines Chapter 12

4 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines What is Work? Work is the transfer of energy to a body by the application of a force that causes the body to move in the direction of the force. Work is done only when a force causes an object to move in the direction of the force. This is different from the everyday meaning of work. Work Equation work = force  distance W = F  d Chapter 12

5 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Work Section 1 Work, Power, and Machines Chapter 12

6 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines What is Work?, continued Work is measured in joules. Because work is calculated as force times distance, it is measured in units of newtons times meters, Nm. These units are also called joules (J). In terms of SI base units, a joule is equivalent to 1 kgm 2 /s 2. Definition of joules 1 J = 1 Nm = 1 kgm 2 /s 2 Chapter 12

7 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Math Skills Work Imagine a father playing with his daughter by lifting her repeatedly in the air. How much work does he do with each lift, assuming he lifts her 2.0 m and exerts an average force of 190 N? 1. List the given and unknown values. Chapter 12 Given:force, F = 190 N distance, d = 2.0 m Unknown:work, W = ? J

8 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Math Skills, continued 2. Write the equation for work. Chapter 12 work = force  distance W = f  d 3. Insert the known values into the equation, and solve. W = 190 N  2.0 m = 380 Nm W = 380 J

9 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Power Power is a quantity that measures the rate at which work is done or energy is transformed. Power Equation Power is measured in watts. A watt (W) is equal to a joule per second (1 J/s). Chapter 12

10 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Power Section 1 Work, Power, and Machines Chapter 12

11 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Math Skills Power It takes 100 kJ of work to lift an elevator 18 m. If this is done in 20 s, what is the average power of the elevator during the process? 1. List the given and unknown values. Chapter 12 Given:work, W = 100 kJ = 1  10 5 J time, t = 20 s The distance of 18 m will not be needed to calculate power. Unknown:power, P = ? W

12 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Math Skills, continued 3. Insert the known values into the equation, and solve. 2. Write the equation for power. Chapter 12

13 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Machines and Mechanical Advantage Machines multiply and redirect forces. Machines help people by redistributing the work put into them. They can change either the size or the direction of the input force. Different forces can do the same amount of work. A machine allows the same amount of work to be done by either decreasing the distance while increasing the force or by decreasing the force while increasing the distance. Chapter 12

14 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Force and Work Section 1 Work, Power, and Machines Chapter 12

15 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Machines and Mechanical Advantage, continued Mechanical advantage tells how much a machine multiplies force or increases distance. Mechanical Advantage Equation Chapter 12

16 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Math Skills Mechanical Advantage Calculate the mechanical advantage of a ramp that is 5.0 m long and 1.5 m high. 1. List the given and unknown values. Chapter 12 Given:input distance = 5.0 m output distance = 1.5 m Unknown:mechanical advantage = ?

17 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Math Skills, continued 2. Write the equation for mechanical advantage. Because the information we are given involves only distance, we only need part of the full equation: 3. Insert the known values into the equation, and solve. Chapter 12


Download ppt "Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work, Power, and Machines Objectives Define work and power."

Similar presentations


Ads by Google