Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tomoyuki MARUYAMA BRS, Nihon Univ (Japan) Collaborators

Similar presentations


Presentation on theme: "Tomoyuki MARUYAMA BRS, Nihon Univ (Japan) Collaborators"— Presentation transcript:

1 Asymmetric Neutrino Emission from Strongly Magnetized Neutron Star (強磁性中性子星からの非対称ニュートリノ放出)
Tomoyuki MARUYAMA BRS, Nihon Univ (Japan) Collaborators  Toshitaka KAJINO    Nao, Univ. of Tokyo  (Japan)  Nobutoshi YASUTAKE INFN, Catania  (Italy)  Myung-ki CHEOUN Soongs Univ  (Korea)  Chung-Yeol RYU Soongs Univ  (Korea)  Jun HIDAKA Nao (Japan)  G.J. MATHEWS Univ. of Notre Dome    (USA)   Takami KURODA Nao (Japan) 1

2

3

4 in the Relativistic Mean-Field (RMF) Approach
§1. Introduction Structure of Proto-Neutron Stars : Strange Matter, Ferromagnetism   Observable Information ‥‥Neutrino Emissions S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 # (1998)       Influence from Hyperons Λ,∑ Ferromagnetism → Large Asymmetry ?   P. Arras and D. Lai, P.R.D60, # (1999) S. Ando, P.R.D68 # (2003) Magnetar 1015G in surface G inside (?)  Our Works ⇒ Neutrino Reactions on High Density Matter with with Strong Mag. Fields in the Relativistic Mean-Field (RMF) Approach TM et al., PRD83, (R) (2011) Neutrino Scattering & Absorption in Surface Region 4

5 Birth of Proto-neutron Star
5 5

6

7

8 In Hot and Dense Neutron-Star-Matter
Pulsar Kick CasA A.G.Lyne, D.R.Lomier, Nature 369, 127 (94) Asymmetry of Supernova Explosion kick and translate Pulsar with Kick Velocity: Average … 400km/s, Highest … 1500km/s    Explosion Energy ~ 1053 erg (almost Neutrino Emissions)   1% Asymmetry are sufficient to explain the Pulsar Kick 2004/casa/casa_xray.jpg Present Work ‥ Neutrino Scattering and Absorption In Hot and Dense Neutron-Star-Matter Estimating Kick Velocity and Spin of NS 8

9 S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998)
§2. Formulation Magnetic Field : Lepton B & L – Mag. Baryon Proto-Nuetron-Star (PNS) Matter without Mag. Field Baryon Wave Function under Mag. Field in Perturbative Way Cross-Sections for n reactions Weak Interaction e + B → e + B : scattering e + B → e- + B’ : absorption   S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 # (1998)

10 §2-1 RMF Approach for Neutron-Star Mattter

11 T.M, H. Shin, H. Fujii, & T. Tatsumi,
EOS of PM1-1 T.M, H. Shin, H. Fujii, & T. Tatsumi, Prog. Theo. Phys. Vol.102, P809

12 EOS of Proto Neutron-Star-Matter
Charge Neuttral ( ) & Lepton Fraction : Yp = 0.4

13 §2-2 Dirac Equation under Magnetic Fields
 N B << εF (Chem. Pot) → B can be treated perturbatively        Landau Level can be ignored  ~ 1017 G Magnetic Part of Lagrangian Dirac Eq.

14 Dirac Spinor Spin Vector
3 negligibly small Dirac Spinor Spin Vector 1414

15 Momentum Distr. of Major Part
  Fermi Distribution Momentum Distr. of Major Part is deformed as oblate Relativistic Effects of Magnetic Contributions Momentum Dependent of Spin Vector Deformation of Fermi Distribution 15

16 When B → 0 , the wave function → plane wave
Electron Landau Level When B → 0 , the wave function → plane wave

17 §2-3 The Cross-Section of ν-B
  Fermi Distribution Deformed Distribution Perturbative Treatment Non-Magnetic Part Magnetic Part 17

18 The Cross-Section of Lepton-Baryon Scattering
with Spin-independent part

19 Spin-dependent Part

20 Electron Contribution
Single Particle Energy Sum of Landau Level Expectation Value of Quantity A Perturbation Spin vector

21 Final electron contribution in ne → e-

22 §3 Results of Cross-Sections
No magnetic field

23 Differential Cross-Sections in Magnetic Field
3% difference

24 Initial Angle-Dependence

25 Magnetic parts of Cross-Sections
Scat. Increasing  in Dir. parallel to B Integrating over the initial angle Absorp. Integrating over the final angle 25

26 Magnetic Parts of Cross-Sections

27 Neutrino Mean-Free Paths
scattering absorption

28 Contribution of Each Element in Scattering Part

29 Contribution of Each Element in Absorption Part

30 EOS of Neutron-Star-Matter with p, n Λ in RMF Appraoch
Cross-Sections of Neutrino Scattering and Absorption under Strong Magnetic Field, calculated in Perturbative Way Neutrinos are More Scattered and Less Absorbed in Direction Parallel to Magnetic Field    ⇒ More Neutrinos are Emitted in Arctic Area Scattering % Absorption % at ρB=3ρ0 and T = 20 MeV 30

31 §4 Estimating Pulsar Kick Velocities of Proto-Neutron Star
CasA A.G.Lyne, D.R.Lomier, Nature 369, 127 (94) Asymmetry of Supernova Explosion kick and translate Pulsar with Kick Velocity: Average … 400km/s, Highest … 1500km/s   2004/casa/casa_xray.jpg  Explosion Energy ~ 1053 erg (almost Neutrino Emissions)   1% Asymmetry is sufficient to explain the Pulsar Kick D.Lai & Y.Z.Qian, Astrophys.J. 495 (1998) L103 Estimating Kick Velocity of PNS with T = 20 MeV and B = 2× 1017G Poloidal Magnetic Field 2‐3% Asymmetry in Absorption 31

32 Neutrino Transportation
Neutrino Phase Space Distribution Function Equil. Part Non-Equil. Part Other Pieces are equilibrium Neutrino Propagation ⇒ Boltzmann Eq.  Neutrinos Propagate on Strait Line only absorption Solution ⇒

33 Mean-Free Paths Magnetic Parts SA: fitting function Scattering
Absorption

34 Baryon density in Proto-Neutron Star
M = 1.68Msolar YL = 0.4 Calculating Neutrino Propagation above rB = r0

35 Baryon density in Proto-Neutron Star
T = 20 MeV M = 1.68 Msolar YL = 0.4 Calculating Neutrino Propagation above rB = r0

36 θ Neutrino Propagation Neutrinos propagate on the straight lines
2) Neutrino are created and absorbed at all positions on the lines Mean-Free Path : σab/V \ θ

37 Angular Dep. of Emitted Neutrinos in Uniform Poloidal Mag. Field
            p, n p, n, L T = 20 MeV Observable Average … 400km/s,

38 §5 Angular Deceleration in Toroidal Magnetic Field
Stability of Magnetic Field in Compact Objects (Braithwaite & Spruit 2004) Toroidal Magnetic Field is stable !! Mag. Field Parallel to Baryonic Flow Assym. of n-Emit. must decelerate PNS Spin 38

39 No poloidal Magnetic Field at the beginning
Single Toroidal by T. Kuroda

40 Finite Polaidal Magnetic Field at the beginning
Anti-paralleled Double Toroidal by 黒田

41 Toroidal Magnetic Field
T = 20MeV Dr = 0.5 (km) R0 = 8 (km) Mag.‐A R0 = 5 (km) Mag.‐B z = 0

42 Angular Deceleration B [G] Neutrino Luminosity
(dET/dt)n ~ 3×1052 erg/s Period P = 10s Magnetic Dipole Rad. Mag Distr. Bary. B [G] at rB = r0 (cm) (n emis.) (g rad.) Mag-A p,n 1.0×1016 46.7 3.02×10-2 4.82×10-2 1.0×10-8 p,n,L 1.6×1016 70.6 5.19×10-2 8.26×10-2 2.6×10-8 Mag-B 2.6×1013 0.157 1.01×10-4 1.61×10-4 6.6×10-14 4.2×1013 0.259 1.90×10-4 3.03×10-4 1.7×10-13 In Early Stage (~ 10 s) n Asymmetric Emission must affect PNS Spin More Significantly than Magnetic Dipole g-Radiation 42

43 §5 Summary EOS of Neutron-Star-Matter with p, n, Λ in RMF Approach
43 EOS of Neutron-Star-Matter with p, n, Λ in RMF Approach Exactly Solving Dirac Eq. with Magnetic Field in Perturbative Way Cross-Sections of Neutrino Scattering and Absorption under Strong Magnetic Field, calculated in Perturbative Way Neutrinos are More Scattered and Less Absorbed                      in Direction Parallel to Magnetic Field    ⇒ More Neutrinos are Emitted in  Arctic  Area Scattering % Absorption % at ρB=3ρ0 and T = 20 MeV  ⇒ Convection, Pulsar-Kick

44 Pulsar Kick in Poroidal Mag. Field B = 2× 1017G ⇒ Perturbative Cal.
   vkick = 580 km/s ( p,n ) , 610 km/s (p,n,Λ) at T = 20 MeV      = 230 km/s ( p,n ) , 270 km/s (p,n,Λ) at T = 30 MeV      400 km/s (Average of Observed Values)     Spin Deceleration  in Toroidal Magnetic Field Asymmetric n-Emission plays an important role in PNS Spin in Early Time Future Plans   n-Scattering Fixed Temp. ⇒ Constant Entropy Exact Solution of Dirac Eq. in Non-Perturbative Cal.   →  Landau Level at least for Electron Antarctic Dir. Mag Distr. (P = 10 s) p,n p,n,L Mag-A 4.8×10-3 5.2×10-3 Mag-B 6.1×10-3 7.2×10-3 Dpl. Rad. 9.8×10-11 Reestimating when B = 1015G in the surface with r = r0 44

45 EOS in Iso-Entropical Model

46 §2-1 Neutron-Star Matter in RMF Approach
RMF Lagrangian, N, L, s, , r Dirac Eq. Scalar Field ⇒ Effective Mass

47 Dirac Spinor Spin Vector
negligibly small Dirac Spinor Spin Vector

48 Spin-indep. part Spin-dep. Part

49 θ Neutrino Propagation Neutrinos propagate on the straight lines
2) Neutrino are created and absorbed at all positions on the lines Mean-Free Path : σab/V \ θ

50 Absorption Mean-Free Path
30MeV SA: fitting function 50MeV 100MeV 200MeV 300MeV

51 §3 Results 3% difference

52 Neutrino Mean-Free-Path at Energy equal to Chem. Potential

53 Magnetic Parts of Cross-Sections

54 Magnetic Parts of Cross-Sections


Download ppt "Tomoyuki MARUYAMA BRS, Nihon Univ (Japan) Collaborators"

Similar presentations


Ads by Google