Presentation is loading. Please wait.

Presentation is loading. Please wait.

GRAVITATIONAL WAVES FROM ACCRETING NS A. Melatos, D. Payne, C. Peralta, M. Vigelius (U. Melbourne) 1.X-ray timing → LMXB spins → GW “stalling” → promising.

Similar presentations


Presentation on theme: "GRAVITATIONAL WAVES FROM ACCRETING NS A. Melatos, D. Payne, C. Peralta, M. Vigelius (U. Melbourne) 1.X-ray timing → LMXB spins → GW “stalling” → promising."— Presentation transcript:

1 GRAVITATIONAL WAVES FROM ACCRETING NS A. Melatos, D. Payne, C. Peralta, M. Vigelius (U. Melbourne) 1.X-ray timing → LMXB spins → GW “stalling” → promising kHz sources! 2.Thermal mountains & r-modes 3.Magnetic mountains: GW spectrum 4.Precession & superfluid circulation

2 NS SPINS IN LMXBs Low-mass ~ M Sun X-ray binaries: disk accretion kHz oscillations in thermonuclear X-ray bursts Simultaneous pulses → stellar spin Much slower than breakup (Chakrabarty et al. 03) breakup narrow range RXTE timing f NS LXLX

3 GW “STALLING” GW torque    f   balances accretion torque   dM/dt)  R disk 1/2 (Wagoner 84; Bildsten 98) Minimum quadrupole moment Narrow range of f since N GW  f  (steep!) BUT rad’n pressure → N acc < 0 (Andersson et al. 05) Promising sources (e.g. Sco X-1): known period, sinusoidal, persistent & strong!

4 I. THERMAL MOUNTAIN Lateral  T e  capture (A,Z) → (A,Z  1) Occurs at lower  in hot spots (Bildsten 98) “Wavy” capture layers →  (A,Z) & heating gradient ↔  T ↔ thermal conductivity & nuclear reaction rate

5 Is  large enough? Elastic crust adjusts → reduces  Need  T/T ≈ 5% at base of outer crust Slow conduction & cracking (  shear < NkT ), so  persists GW correlated with thermal X-rays   N core SF core LMXB data (A,Z)(A,Z)  heat) (Ushomirsky et al. 00)

6 II. r-MODES Rossby waves continuously excited in core (Andersson et al. 99) ; cf. ocean r-modes (Heyl 04) Amplitude (→  ) set by shear modulus, normal-superfluid friction (Lindblom & Mendell 99), boundary layer viscosity (Bildsten & Ushomirsky 00), radial crust-core coupling (Levin & Ushomirsky 01) Thermal instability (Levin 99) Quiescent L X ~ 10 34 erg s -1 from NS transients, e.g. Aql X-1… not seen! (Brown & Ushomirsky 00)

7 Onset of instability (Bildsten & Ushomirsky 00) VBL + normal core Thermal runaway cycle (Levin 99) VBL + superfluid core no VBL MSPs newly born NS accreting NS 1 r-mode grows 2 3 GW losses 4

8 III. MAGNETIC BURIAL Polar accretion Equatorward spreading Hydro pressure balanced by tension in compressed equatorial B :  ×B)×B  P = 0 Flux freezing →  ds  /|B| Need 10 -5 M Sun (cf. Brown & Bildsten 98) B  10 -5 M Sun 10 -8 M Sun (Payne & Melatos 04) B 

9 GW SIGNAL Magnetic mountain →  → wave strain h c Integrate for one yr Resistivity, sinking… Magnetic moment ↓ (see NS binaries) Predict h   -1 10 -8 M Sun 10 -2 M Sun LIGO I LIGO II (Melatos & Payne 05)

10 Is this (distorted) magnetic field unstable? No! Parker instability “already” happened (and line tying) PARKER “BLISTER” mass & flux loss < 1% “DRAINAGE”

11 MHD OSCILLATIONS Perturb in Zeus 3D: “sloshes” stably for 2500 T Alfven Alfvén mode (slow) frequency depends on M a Sound mode (fast) frequency independent of M a    Sun

12 GW SPECTRUM ff h+h+ hh LIGO I LIGO II 2f2f  f   d 3 I xz /dt 3 2f   d 3 I xy /dt 3 x y z tt ☺ ☺

13 PRECESSION Magnetic mountain inclined to   Precession undamped: GW near f  and 2f  Precession damped: e 3 →  , no X-ray pulses, GW at 2f  only (if triaxial) Excitation Disk-magnetosphere torque (Jones & Andersson 02) Near-zone magnetic dipole torque (Melatos 00)

14 IV. SUPERFLUID CIRCULATION Rotation in sphere drives meridional circulation Time-dependent & asymmetric at high Re ~ 10 11 Precession: asymmetric KE of fluid → GW torque Re=10 4 EKMAN PUMPING

15 3-dim superfluid hydro code (HVBK theory) GW near 2f  broadened by Ekman & precession STREAM LINES KE SURFACE  u  u   = const (t)(t) FFT →  f  QUADRUPOLE

16 SUMMARY LMXB spins → GW “stalling” if  ≈ 10  8 Thermal & magnetic mountains & r-modes Detectable by LIGO II Spectrum broadened by (MHD) oscillations Precession Accretion by SN fallback? (Watts & Andersson 03) Surface asymmetry after r-p burning? (Jones 05)

17 Gone!


Download ppt "GRAVITATIONAL WAVES FROM ACCRETING NS A. Melatos, D. Payne, C. Peralta, M. Vigelius (U. Melbourne) 1.X-ray timing → LMXB spins → GW “stalling” → promising."

Similar presentations


Ads by Google