Download presentation
Presentation is loading. Please wait.
Published byJeffery Paul Modified over 9 years ago
1
Antiferromagnetic coulpling in spintronics Tomas Jungwirth Univ. of Nottingham, UK Institute of Physics ASCR & Charles Univ., Czech Rep. Hitachi and Univ. Cambridge, UK & Japan Politecnico di Milano, ItalyUniv. of California, Berkeley Institut de Ciencia de Materials de Barcelona, Spain
2
Giant magnetoresistance (GMR) multilayers: the dawn of spintronics Fert, Grünberg, et al. 1988 Nobel Prize 2007 Antiferromagnetic arrangement of a ferromagnetic multilayer at B=0
3
FM Soft FM Hard FM Soft FM Hard FM Fixed FM AFM Soft FM Fixed FM AFM Soft FM 1. AFM coupling between FMs at B=0 3. One FM pinned by AFM material Writing information in spin-valve: towards spintronic memory (MRAM) 2. One FM flips harder than the other FM
4
Fixed FM NM AFM Soft FM Towards reliable switching of a particular MRAM bit
5
Fixed FM AFM FM Toggle switching first commercial MRAMs “Synthetic AFM“
6
IeIe IeIe Fert, Grünberg, et al. 1988 Nobel Prize 2007 Read-out: Giant magnetoresistance (GMR)
7
M Kelvin, 1857 IeIe Read-out: Anisotropic magnetoresistance (AMR) Spintronic effect 150 years ahead of time
8
M IeIe Kelvin, 1857 Read-out: Anisotropic magnetoresistance (AMR) Spintronic effect 150 years ahead of time
9
Ohmic AMR Magnetization-orientation-dependent scattering Relativistic spin-orbit coupling Kelvin, 1857
10
Ohmic GMR Spin-channel-dependent scattering Non-relativistic Fert, Grünberg, 1988
11
Tunneling magnetoresistance (TMR) MRAM Spin-channel-dependent tunneling DOS Non-relativistic Julliere 1975, Moodera et al., Miyazaki & Tezuka 1995
12
Tunneling anisotopic magnetoresistance (TAMR) Gould, TJ et al. PRL ‘04 Magnetization-orientation-dependent tunneling DOS Relativistic spin-orbit coupling
13
“Mott“ two-spin-channel model of ferromagnets “Dirac“ relativistic spin-orbit coupling I I I I Mott, 1936 Dirac, 1928 Two paradigms for spintronics
14
Antiferromagnetic MATERIALS playing ACTIVE role in spintronics Fixed FM AFM FM AFM
15
Ta/Ru/Ta MnIr MgO Pt NiFe Spin-valve with AFM electrode Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12
16
Ta/Ru/Ta MnIr MgO Pt NiFe Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode
17
Ta/Ru/Ta NiFe MnIr MgO Pt Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode
18
Ta/Ru/Ta NiFe MnIr MgO Pt >100% spin-valve-like signal at ~50 mT 50 100 R [k ] 01 B [ T ] 1.5 & 3nm IrMn 4K Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode
19
Ta/Ru/Ta NiFe MnIr MgO Pt Electrically measurable memory effect in AFM Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode
20
Ta/Ru/Ta NiFe MnIr MgO Pt Small signal in control sample without IrMn Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode
21
Scholl et al. PRL ‘04 See also Wang et al. PRL ’12: room-T AFM TAMR in CoPt/IrMn/AlO x /Pt Spin-valve with AFM electrode Writing by exchange-spring rotation of AFM by FM B [ o ] 50 100 R [k ] 01 B [ T ]
22
50 100 R [k ] 01 B [ T ] -0.200.2 Energy (eV) 50 -50 0 DOS/DOS spin-orbit coupling AFM Shick, TJ et al. PRB ’10 see also Zemen, TJ et al. arXiv:1301.5369 Spin-valve with AFM electrode
23
-0.200.2 Energy (eV) 50 -50 0 (DOS 001 – DOS 110 )/DOS Shick, Wunderlich, TJ et al. PRB ‘10 IrMn, AuMn,... FerromagnetsAntiferromagnets Park, Wunderlich, Joo, Jung, Shin, TJ et al. PRL’08 Relativistic ab initio density-of-states anisotropy Spin-valve with AFM electrode
24
Ta/Ru/Ta MnIr MgO Pt NiFe Petti, Marti, Bertacco, TJ et al., submitted to APL ‘13 AFM tunnel junction written by field-cool without FM
25
Ta/Ru/Ta NiFe MnIr MgO Pt Petti, Marti, Bertacco, TJ et al., submitted to APL ‘13 AFM tunnel junction written by field-cool without FM
26
Ta/Ru/Ta MnIr Pt Field thermal-assisted MRAM MgO Petti, Marti, Bertacco, TJ et al., submitted to APL ‘13 AFM tunnel junction written by field-cool without FM
27
Magnetic memory insensitive to magnetic fields & producing no stray fields (R H -R L )/R L (%) Ta/Ru/Ta MnIr MgO Pt Petti, Marti, Bertacco, TJ et al., submitted to APL ‘13 B z y x AFM tunnel junction written by field-cool without FM
28
STT-MRAM Spins injected from external polarizer in a non-uniform magnetic structure Berger PRB ’96, Slonczewski JMMM ’96 MpMp M IeIe Writing by current: non-relativistic spin-transfer torque
29
Spins injected from external polarizer in a non-uniform magnetic structure II Mott with ferromagnets II Mott with antiferromagnets MpMp M IeIe Berger PRB ’96, Slonczewski JMMM ’96 Writing by current: non-relativistic spin-transfer torque
30
M IeIe Writing by current: relativistic spin-orbit torque Manchon & Zhang, PRB ‘08, Chernyshev et al. Nature Phys.‘09, Miron et al. Nature Mater. ‘10, Fang, Ferguson, TJ et al. Nature Nanotech.‘11 Miron et al., Nature ‘11 Spin current in a uniform magnetic structure without external polarizer In-plane current switching
31
Manchon & Zhang, PRB ‘08, Chernyshev et al. Nature Phys.‘09, Miron et al. Nature Mater. ‘10, Fang, Ferguson, TJ et al. Nature Nanotech.‘11 Spin current in a uniform magnetic structure without external polarizer I I Dirac with ferromagnets Dirac with antiferromagnets II M IeIe Andrew Ferguson, W18.00007 Writing by current: relativistic spin-orbit torque
32
M Spintronics & transistorsSpintronics & photonics T c < room-T Ohno, Dietl et al., Science ’98,’00, TJ et al., Rev. Mod. Phys. ‘06 Petr Němec, R18.00001 FM semiconductors Writing by electric field or light: Magnetic semiconductor spintronics
33
II-VIFM T C (K)AFM T N (K) MnO122 MnS152 MnSe173 MnTe323 EuO67 EuS16 EuSe5 EuTe10 II-V-IV-VFM T C (K)AFM T N (K) MnSiN 2 490 III-VFM T C (K)AFM T N (K) FeN100 FeP115 FeAs77 FeSb100-220 GdN72 GdP15 GdAs19 GdSb27 I-VI-III-VIFM T C (K)AFM T N (K) CuFeO 2 11 CuFeS 2 825 CuFeSe 2 70 CuFeTe 2 254 I-II-VFM T C (K)AFM T N (K) Ia=Li, Na,.. Ib=Cu II=Mn V=Sb,As, P > room T Semiconductors: more AFMs than FMs and high-T N AFMs TJ, Novák, Martí et al. PRB ’11, Cava Viewpoint, Physics ’11, Máca, Mašek, TJ et al. JMMM ’12
34
Spin-orbit-coupled Mott AFM semiconductor Kim et al., Science ’09, Jin et al. PRB ‘09, Arita et al. PRL ‘12
35
LSMO SIO Ag Pt LSMO SIO Ag T = 200 K T = 40 K T = 4.2 K Ohmic AMR in Sr 2 IrO 4 AFM semiconductor Xavier Martí, T18.00011
36
B.G. Park, J. Wunderlich, X. Marti, V. Holy, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A.B. Shick, T. Jungwirth Nature Mater. 10 (2011) 347 – 351 X. Marti, B. G. Park, J. Wunderlich, H. Reichlova, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, T. Jungwirth Phys. Rev. Lett. 108 (2012) 017201(1) - 017201(4) D. Petti, E. Albisetti, H. Reichlová, J. Gazquez, M. Varela, M. Molina-Ruiz, A. F. Lopeandía, K. Olejník, V. Novák, I. Fina, B. Dkhil, J. Hayakawa, X. Marti, J. Wunderlich, T. Jungwirth, R. Bertacco submitted to Appl. Phys. Lett. Metal AFM spintronics
37
Semiconductor AFM spintronics T. Jungwirth, V. Novák, X. Marti, M. Cukr, F. Máca, A.B. Shick, J. Mašek, P. Horodyska, P. Němec, V. Holý, J. Zemek, P. Kužel, I. Němec, B. L. Gallagher, R. P. Campion, C. T. Foxon, J. Wunderlich Phys. Rev. B 83 (2011) 035321(1) - 035321(6). C. Rayan Serrao, Jian Liu, J.T. Heron, G. Singh-Bhalla, A. Yadav, S.J. Suresha, R. J. Paull, D. Yi, J.-H. Chu, M. Trassin, A. Vishwanath, E. Arenholz, C. Frontera, J. Železný, J. Mašek, T. Jungwirth, X. Marti, R. Ramesh Phys. Rev. B 87 (2013) 085121(1)-08512(6) P. Wadley, V. Novak, R. P. Campion, C. Rinaldi, X. Mart, H. Reichlova, J. Zelezny, J. Gazquez, M. A. Roldan, M. Varela, D. Khalyavin, S. Langridge, D. Kriegner,10 F. Maca, J. Masek, V. Holy, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, C. T. Foxon, J. Wunderlich, and T. Jungwirth, to be published X. Marti, I. Fina, D. Yi, J. Liu, J.H. Chu, C. Rayan-Serrao, S. Suresha, J. Železný, T. Jungwirth, J. Fontcuberta, R. Ramesh, to be published
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.