Download presentation
Presentation is loading. Please wait.
Published byMeghan Douglas Modified over 9 years ago
1
1 Running Clustering Algorithm in Weka Presented by Rachsuda Jiamthapthaksin Computer Science Department University of Houston
2
2 What is Weka? Data mining software in Java –Supervised learning (classification) –Unsupervised learning (clustering) Tools –Exploration –Visualization –Experiment –Statistical summary
3
3 Download Weka http://www.cs.waikato.ac.nz/ml/weka/http://www.cs.waikato.ac.nz/ml/weka/ –Window (weka-3-5-6jre.exe) –Linux
4
4 Getting Start
5
5 Memory Limitation in Weka Run Chooser from DOS to increase memory C:\>java -Xmx128m -classpath.;/progra~1/weka-3-5/weka.jar weka.gui.GUIChooser
6
6 Weka GUI
7
7 Explorer
8
8 Open Files (.csv,.arff)
9
9 Dataset’s Description Attributes Dataset’s statistics
10
10 Remove Class Attribute Non-class attributes
11
11 Select A Clustering Algorithm
12
12 Select A Clustering Algorithm
13
13 Select A Clustering Algorithm
14
14 Parameters’ Setting
15
15 Run A Clustering Algorithm
16
16 DBSCAN Results === Run information === Scheme: weka.clusterers.DBScan -E 0.9 -M 6 -I weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase -D weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject Relation: iris-weka.filters.unsupervised.attribute.Remove-R5 Instances: 150 Attributes: 4 sepallength sepalwidth petallength petalwidth Test mode: evaluate on training data === Model and evaluation on training set === DBScan clustering results ======================================================================================== Clustered DataObjects: 150 Number of attributes: 4 Epsilon: 0.9; minPoints: 6 Index: weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase Distance-type: weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject Number of generated clusters: 1 Elapsed time:.06 ( 0.) 5.1,3.5,1.4,0.2 --> 0 ( 1.) 4.9,3,1.4,0.2 --> 0 ( 2.) 4.7,3.2,1.3,0.2 --> 0 ( 3.) 4.6,3.1,1.5,0.2 --> 0 ( 4.) 5,3.6,1.4,0.2 --> 0 … (146.) 6.3,2.5,5,1.9 --> 0 (147.) 6.5,3,5.2,2 --> 0 (148.) 6.2,3.4,5.4,2.3 --> 0 (149.) 5.9,3,5.1,1.8 --> 0 Clustered Instances 0 150 (100%)
17
17 Simplify A Tested Dataset
18
18 Simplify A Tested Dataset
19
19 Parameters’ Setting
20
20 DBSCAN Clustering Results === Run information === Scheme: weka.clusterers.DBScan -E 0.3 -M 50 -I weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase -D weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject Relation: iris-weka.filters.unsupervised.attribute.Remove-R1-2,5 Instances: 150 Attributes: 2 petallength petalwidth Test mode: evaluate on training data === Model and evaluation on training set === DBScan clustering results ======================================================================================== Clustered DataObjects: 150 Number of attributes: 2 Epsilon: 0.3; minPoints: 50 Index: weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase Distance-type: weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject Number of generated clusters: 2 Elapsed time:.03 ( 0.) 1.4,0.2 --> 0 ( 1.) 1.4,0.2 --> 0 ( 2.) 1.3,0.2 --> 0 ( 3.) 1.5,0.2 --> 0 … (146.) 5,1.9 --> 1 (147.) 5.2,2 --> 1 (148.) 5.4,2.3 --> 1 (149.) 5.1,1.8 --> 1 Clustered Instances 0 50 ( 33%) 1 100 ( 67%)
21
21 Run k-Means in Weka
22
22 Parameters’ Setting
23
23 k-Means Clustering Results === Run information === Scheme: weka.clusterers.SimpleKMeans -N 2 -S 10 Relation: iris-weka.filters.unsupervised.attribute.Remove-R1-2,5 Instances: 150 Attributes: 2 petallength petalwidth Test mode: evaluate on training data === Model and evaluation on training set === kMeans ====== Number of iterations: 6 Within cluster sum of squared errors: 5.179687509974782 Cluster centroids: Cluster 0 Mean/Mode: 4.906 1.676 Std Devs: 0.8256 0.4248 Cluster 1 Mean/Mode: 1.464 0.244 Std Devs: 0.1735 0.1072 Clustered Instances 0 100 ( 67%) 1 50 ( 33%)
24
24 ArffViewer: Convert Dataset’s Extension
25
25 Open A Dataset’s file
26
26 Select A Dataset’s File
27
27 View the Dataset
28
28 Manipulate the Dataset (Optional)
29
29 Save As.Arff File
30
30 Weka Documentation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.