Download presentation
Presentation is loading. Please wait.
Published byBuddy Beasley Modified over 9 years ago
1
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression Clustering Association Rules Attribute Selection Data Visualization The Experimenter The Knowledge Flow GUI Conclusions Machine Learning with WEKA - a reminder (?) based on notes by
2
10/25/2015University of Waikato2 WEKA: the bird Copyright: Martin Kramer (mkramer@wxs.nl)
3
10/25/2015University of Waikato3 WEKA: the software Machine learning/data mining software written in Java (distributed under the GNU Public License) Used for research, education, and applications Complements “Data Mining” by Witten & Frank Main features: Comprehensive set of data pre-processing tools, learning algorithms and evaluation methods Graphical user interfaces (incl. data visualization) Environment for comparing learning algorithms
4
10/25/2015University of Waikato4 WEKA: versions There are several versions of WEKA: WEKA 3.0: “book version” compatible with description in data mining book 1 st edition WEKA 3.2: “GUI version” adds graphical user interfaces (earlier version is command-line only) WEKA 3.4 ++ on SoC linux and ISS windows This talk is based on snapshots of WEKA 3.3 … with some extra up-to-date snapshots Only changes are “layout” and some extras
5
10/25/2015University of Waikato5 @relation heart-disease-simplified @attribute age numeric @attribute sex { female, male} @attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina} @attribute cholesterol numeric @attribute exercise_induced_angina { no, yes} @attribute class { present, not_present} @data 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files
6
10/25/2015University of Waikato6 @relation heart-disease-simplified @attribute age numeric @attribute sex { female, male} @attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina} @attribute cholesterol numeric @attribute exercise_induced_angina { no, yes} @attribute class { present, not_present} @data 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files
7
10/25/2015University of Waikato7
8
10/25/2015University of Waikato8
9
10/25/2015University of Waikato9
10
10/25/2015University of Waikato10 Explorer: pre-processing the data Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary Data can also be read from a URL or from an SQL database (using JDBC) Pre-processing tools in WEKA are called “filters” BUT it may be easier to reformat to ARFF yourself (write a program in python / java … or just use WordPad to type in the text – but make sure format is right!), this helps with data understanding
11
10/25/2015University of Waikato11
12
10/25/2015University of Waikato12
13
10/25/2015University of Waikato13
14
10/25/2015University of Waikato14
15
10/25/2015University of Waikato15
16
10/25/2015University of Waikato16
17
10/25/2015University of Waikato17
18
10/25/2015University of Waikato18 Explorer: building “classifiers” Classifiers in WEKA are models for predicting nominal or numeric quantities Implemented learning schemes include: Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes’ nets, … You explore by trying different classifiers, see which works best for you…
19
10/25/2015University of Waikato19
20
10/25/2015University of Waikato20
21
10/25/2015University of Waikato21
22
10/25/2015University of Waikato22
23
10/25/2015University of Waikato23
24
10/25/2015University of Waikato24
25
10/25/2015University of Waikato25
26
10/25/2015University of Waikato26
27
10/25/2015University of Waikato27
28
10/25/2015University of Waikato28
29
10/25/2015University of Waikato29
30
10/25/2015University of Waikato30
31
10/25/2015University of Waikato31
32
10/25/2015University of Waikato32
33
10/25/2015University of Waikato33
34
10/25/2015University of Waikato34
35
10/25/2015University of Waikato35
36
10/25/2015University of Waikato36
37
10/25/2015University of Waikato37
38
10/25/2015University of Waikato38
39
10/25/2015University of Waikato39
40
10/25/2015University of Waikato40
41
10/25/2015University of Waikato41
42
10/25/2015University of Waikato42
43
10/25/2015University of Waikato43
44
10/25/2015University of Waikato44
45
10/25/2015University of Waikato45
46
10/25/2015University of Waikato46
47
10/25/2015University of Waikato47
48
10/25/2015University of Waikato48
49
10/25/2015University of Waikato49
50
10/25/2015University of Waikato50
51
10/25/2015University of Waikato51
52
10/25/2015University of Waikato52
53
10/25/2015University of Waikato53 WEKA has more… Clustering data into groups Finding associations between attributes Visualisation - online analytical processing Experimenter to run and compare different MLs Knowledge Flow GUI 3 rd -party add-ons: sourceforge.net http://www.cs.waikato.ac.nz/ml/weka
54
WEKA from ISS PC 2009
59
@relation ukus @attribute center numeric @attribute centre numeric @attribute centerpercent numeric @attribute color numeric @attribute colour numeric @attribute colorpercent numeric @attribute english {UK,US} @data 1,32,3, 0,20,0, UK 0,25,0, 0,12,0, UK 9,27,25, 0,84,0, UK 0,19,0, 0,24,0, UK 0,16,0, 0,14,0, UK 0,16,0, 0,12,0, UK 0,21,0, 0,38,0, UK 0,25,0, 0,34,0, UK 2,26,7, 2,3,40, UK 2,32,5, 1,59,2, UK 31,0,100, 55,0,100, US 61,0,100, 26,0,100, US 24,0,100, 11,0,100, US 12,1,92, 21,4,84, US 8,0,100, 4,2,67, US 10,0,100, 8,0,100, US 19,0,100, 22,0,100, US 14,0,100, 7,0,100, US 14,0,100, 6,0,100, US 8,5,62, 24,0,100, US
71
@relation test @attribute center numeric @attribute centre numeric @attribute centerpercent numeric @attribute color numeric @attribute colour numeric @attribute colorpercent numeric @attribute english {UK,US} @data 10,5,33, 0,20,0, UK
76
10/25/2015University of Waikato76 WEKA has more… Clustering data into groups Finding associations between attributes Visualisation - online analytical processing Experimenter to run and compare different MLs Knowledge Flow GUI 3 rd -party add-ons: sourceforge.net http://www.cs.waikato.ac.nz/ml/weka
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.