Presentation is loading. Please wait.

Presentation is loading. Please wait.

Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.

Similar presentations


Presentation on theme: "Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression."— Presentation transcript:

1 Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression Clustering Association Rules Attribute Selection Data Visualization The Experimenter The Knowledge Flow GUI Conclusions Machine Learning with WEKA - a reminder (?) based on notes by

2 10/25/2015University of Waikato2 WEKA: the bird Copyright: Martin Kramer (mkramer@wxs.nl)

3 10/25/2015University of Waikato3 WEKA: the software Machine learning/data mining software written in Java (distributed under the GNU Public License) Used for research, education, and applications Complements “Data Mining” by Witten & Frank Main features:  Comprehensive set of data pre-processing tools, learning algorithms and evaluation methods  Graphical user interfaces (incl. data visualization)  Environment for comparing learning algorithms

4 10/25/2015University of Waikato4 WEKA: versions There are several versions of WEKA:  WEKA 3.0: “book version” compatible with description in data mining book 1 st edition  WEKA 3.2: “GUI version” adds graphical user interfaces (earlier version is command-line only)  WEKA 3.4 ++ on SoC linux and ISS windows  This talk is based on snapshots of WEKA 3.3  … with some extra up-to-date snapshots  Only changes are “layout” and some extras

5 10/25/2015University of Waikato5 @relation heart-disease-simplified @attribute age numeric @attribute sex { female, male} @attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina} @attribute cholesterol numeric @attribute exercise_induced_angina { no, yes} @attribute class { present, not_present} @data 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files

6 10/25/2015University of Waikato6 @relation heart-disease-simplified @attribute age numeric @attribute sex { female, male} @attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina} @attribute cholesterol numeric @attribute exercise_induced_angina { no, yes} @attribute class { present, not_present} @data 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files

7 10/25/2015University of Waikato7

8 10/25/2015University of Waikato8

9 10/25/2015University of Waikato9

10 10/25/2015University of Waikato10 Explorer: pre-processing the data Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary Data can also be read from a URL or from an SQL database (using JDBC) Pre-processing tools in WEKA are called “filters” BUT it may be easier to reformat to ARFF yourself (write a program in python / java … or just use WordPad to type in the text – but make sure format is right!), this helps with data understanding

11 10/25/2015University of Waikato11

12 10/25/2015University of Waikato12

13 10/25/2015University of Waikato13

14 10/25/2015University of Waikato14

15 10/25/2015University of Waikato15

16 10/25/2015University of Waikato16

17 10/25/2015University of Waikato17

18 10/25/2015University of Waikato18 Explorer: building “classifiers” Classifiers in WEKA are models for predicting nominal or numeric quantities Implemented learning schemes include:  Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes’ nets, … You explore by trying different classifiers, see which works best for you…

19 10/25/2015University of Waikato19

20 10/25/2015University of Waikato20

21 10/25/2015University of Waikato21

22 10/25/2015University of Waikato22

23 10/25/2015University of Waikato23

24 10/25/2015University of Waikato24

25 10/25/2015University of Waikato25

26 10/25/2015University of Waikato26

27 10/25/2015University of Waikato27

28 10/25/2015University of Waikato28

29 10/25/2015University of Waikato29

30 10/25/2015University of Waikato30

31 10/25/2015University of Waikato31

32 10/25/2015University of Waikato32

33 10/25/2015University of Waikato33

34 10/25/2015University of Waikato34

35 10/25/2015University of Waikato35

36 10/25/2015University of Waikato36

37 10/25/2015University of Waikato37

38 10/25/2015University of Waikato38

39 10/25/2015University of Waikato39

40 10/25/2015University of Waikato40

41 10/25/2015University of Waikato41

42 10/25/2015University of Waikato42

43 10/25/2015University of Waikato43

44 10/25/2015University of Waikato44

45 10/25/2015University of Waikato45

46 10/25/2015University of Waikato46

47 10/25/2015University of Waikato47

48 10/25/2015University of Waikato48

49 10/25/2015University of Waikato49

50 10/25/2015University of Waikato50

51 10/25/2015University of Waikato51

52 10/25/2015University of Waikato52

53 10/25/2015University of Waikato53 WEKA has more… Clustering data into groups Finding associations between attributes Visualisation - online analytical processing Experimenter to run and compare different MLs Knowledge Flow GUI 3 rd -party add-ons: sourceforge.net http://www.cs.waikato.ac.nz/ml/weka

54 WEKA from ISS PC 2009

55

56

57

58

59 @relation ukus @attribute center numeric @attribute centre numeric @attribute centerpercent numeric @attribute color numeric @attribute colour numeric @attribute colorpercent numeric @attribute english {UK,US} @data 1,32,3, 0,20,0, UK 0,25,0, 0,12,0, UK 9,27,25, 0,84,0, UK 0,19,0, 0,24,0, UK 0,16,0, 0,14,0, UK 0,16,0, 0,12,0, UK 0,21,0, 0,38,0, UK 0,25,0, 0,34,0, UK 2,26,7, 2,3,40, UK 2,32,5, 1,59,2, UK 31,0,100, 55,0,100, US 61,0,100, 26,0,100, US 24,0,100, 11,0,100, US 12,1,92, 21,4,84, US 8,0,100, 4,2,67, US 10,0,100, 8,0,100, US 19,0,100, 22,0,100, US 14,0,100, 7,0,100, US 14,0,100, 6,0,100, US 8,5,62, 24,0,100, US

60

61

62

63

64

65

66

67

68

69

70

71 @relation test @attribute center numeric @attribute centre numeric @attribute centerpercent numeric @attribute color numeric @attribute colour numeric @attribute colorpercent numeric @attribute english {UK,US} @data 10,5,33, 0,20,0, UK

72

73

74

75

76 10/25/2015University of Waikato76 WEKA has more… Clustering data into groups Finding associations between attributes Visualisation - online analytical processing Experimenter to run and compare different MLs Knowledge Flow GUI 3 rd -party add-ons: sourceforge.net http://www.cs.waikato.ac.nz/ml/weka


Download ppt "Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression."

Similar presentations


Ads by Google