Presentation is loading. Please wait.

Presentation is loading. Please wait.

ADSL Equalization Van Herck Hans Verheyden Jonas.

Similar presentations


Presentation on theme: "ADSL Equalization Van Herck Hans Verheyden Jonas."— Presentation transcript:

1 ADSL Equalization Van Herck Hans Verheyden Jonas

2 Content Implementation of theoretical schematic Optimisation algorithm (LMS) Simulation results

3 QAM demod decoder S/P quadrature amplitude modulation (QAM) encoder mirror data and N -IFFT P/S D/A + transmit filter N -FFT and remove mirrored data S/P TRANSMITTER RECEIVER N/2 subchannelsN real samples N/2 subchannels receive filter + A/D 00110 Bits P/S

4 QAM demod decoder S/P quadrature amplitude modulation (QAM) encoder mirror data and N -IFFT add cyclic prefix P/S D/A + transmit filter N -FFT and remove mirrored data S/P remove cyclic prefix TRANSMITTER RECEIVER N/2 subchannelsN real samples N/2 subchannels receive filter + A/D 00110 Bits channel P/S

5 Real channel

6 QAM demod decoder invert channel = FEQ S/P quadrature amplitude modulation (QAM) encoder mirror data and N -IFFT add cyclic prefix P/S D/A + transmit filter N -FFT and remove mirrored data S/P remove cyclic prefix TRANSMITTER RECEIVER N/2 subchannelsN real samples N/2 subchannels receive filter + A/D 00110 Bits channel P/S

7 QAM demod decoder invert channel = FEQ S/P quadrature amplitude modulation (QAM) encoder mirror data and N -IFFT add cyclic prefix P/S D/A + transmit filter N -FFT and remove mirrored data S/P remove cyclic prefix TRANSMITTER RECEIVER N/2 subchannelsN real samples N/2 subchannels time domain equalizer (FIR filter) receive filter + A/D 00110 Bits channel P/S

8 Transmitter

9 Channel and TEQ

10 Receiver

11 TEQ Determine W and B through different algorithms Choose length W and B Goal: h ∗ w shorter than h z-z- h + w b - xkxk rkrk ekek nknk + TIR TEQCIR

12 Least Mean Squares z-z- h + w b - xkxk rkrk ekek nknk + TIR TEQCIR

13 Simulation results More or less ideal channel

14 Simulation results Real channel

15 Simulation results Influence CP

16 Optimised LMS (FSTEQ) Every iteration step: B = FFT(b) Check if B lies between boundaries Scale if needed New b = IFFT(B)

17 Conclusion Implementing TEQ doesn’t reduce error percentage, but does increase efficiency Still errors in received symbols: error coding is needed

18 Questions?


Download ppt "ADSL Equalization Van Herck Hans Verheyden Jonas."

Similar presentations


Ads by Google