Download presentation
Presentation is loading. Please wait.
Published byAbigail Conley Modified over 9 years ago
1
1/23 Ant Colony Optimization for Hyperbox Clustering and its Application to HPV Virus Classification ハイパーボックス・クラスタリングのためのア ント・コロニ最適化と HPV ウィルス判別への応 用 知能システム科学専攻 廣田研究室 Guilherme Novaes RAMOS 04M35692
2
2/23 Pattern recognition Text Speech Image Customer profile Chemical compounds Microarrays … Motivation
3
3/23 Human PapillomaVirus HPV virus HPV symptom Cervical HPVs Oral HPVs Research is not very advanced Proper treatment Local risk profile Cancer Early diagnosis
4
4/23 Proposal Hyperbox
5
5/23 Background: Ant Colony Optimization Dorigo [IEEE, 97] Characteristics Versatile Robust Population based 1/3
6
6/23 33 Background: Hyperboxes Simpson [91] Defines a region in an n-dimensional space Described by 2 vectors Simplest classifier If x H 1 Then x Class 1 2/3
7
7/23 Background: Existing applications ACO Cemetery approach Partition matrix Hyperbox Min-max fuzzy neural networks Pattern classification Clustering Classifiers 3/3
8
8/23 Hyperbox clustering with Ant Colony Optimization Ants scatter hyperboxes in the feature space Objective: maximize hyperbox density
9
9/23 HACO Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Load data Define C Initialize pheromone Y N 1/6 Define Clusters
10
10/23 HACO ExploitationExploration Probability Assign hyperbox 2/6 Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters
11
11/23 HACO Hyperbox density Generate neighbor Change solution N Y Probability Density? 3/6 Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters
12
12/23 HACO ij : pheromone value : trail persistance best : hyperbox density of best solution 4/6 Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters
13
13/23 HACO Fitness (density) Number of iterations Comparison with previous solutions … 5/6 HACO ACO Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters Density Iteration Fitness
14
14/23 HACO Overlapping Nearest neighbor 6/6 Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters
15
15/23 Specifications Pentium M 1.6GHz, 512 MB of RAM C++ Suse Linux Data sets 3 computer generated HPV Experiments
16
16/23 Experiments - Dataset 1 1/6 FCM ACO HACO 150 samples, 2 dimensions NN
17
17/23 Experiments - Dataset 2 2/6 FCM ACO HACO 302 samples, 2 dimensions NN
18
18/23 Experiments - Dataset 3 3/6 FCM ACO HACO 600 samples, 2 dimensions NN
19
19/23 Experiments - Results 4/6 NNFCMACO TimeFitness Accuracy TimeFitnessAccuracyTimeFitnessAccuracy DS1 0.02 889.5 100%0.04913.674%6.1477.570.7% DS2 0.05 19164.6 100%0.124457.448.7%16.211089.256% DS3 0.10594.1100%0.21743.7100%334754.672.2% HACO D = 1D = 2D = 3 TimeFitness Accuracy TimeFitnessAccuracyTimeFitnessAccuracy DS1 3.5889.5100%1889.5100%1489.8965.3% DS2 33.8 19164.6 100%9.919164.6100%6.119164.6100% DS3 33.8594.1100%10594.1100%5.1594.1100%
20
20/23 Experiments - HPV Data Department of stomatology Dentistry School Characteristics 199 samples 42 attributes 5/6
21
21/23 Experiments - Results 6/6 NNFCMACO TimeFitness Accuracy TimeFitnessAccuracyTimeFitnessAccuracy HPV 0.30 49534.3 68.4%0.7021880.350.8%42.012452.452.6% HACO D = 1D = 2D = 3 TimeFitness Accuracy TimeFitnessAccuracyTimeFitnessAccuracy HPV 5.80 25555.1 71.4%231918.168.1%131522.167.6%
22
22/23 Conclusions Pattern recognition Probable HPV risk profile Advantages Higher accuracy Competitive runtime ACO (HPV) 29.1% - 36.3% more accurate 82.6% - 97.6% faster
23
23/23 Perspectives Test with larger data sets Automatic parameter setting Hyperbox shape optimization Compare/Apply other tools GA SOM …
24
24/23 Thank you for your attention
25
25/23 HPV statistics Over 100 viruses 500,000 new cases of cancer diagnosed each year 200,000 deaths each year
26
26/23 Parameters
27
27/23 Hyperbox Number : search space ratio n : attributes D k : k-th dimension length x k : k-th attribute of samples 1/6
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.