Presentation is loading. Please wait.

Presentation is loading. Please wait.

1/23 Ant Colony Optimization for Hyperbox Clustering and its Application to HPV Virus Classification ハイパーボックス・クラスタリングのためのア ント・コロニ最適化と HPV ウィルス判別への応 用 知能システム科学専攻.

Similar presentations


Presentation on theme: "1/23 Ant Colony Optimization for Hyperbox Clustering and its Application to HPV Virus Classification ハイパーボックス・クラスタリングのためのア ント・コロニ最適化と HPV ウィルス判別への応 用 知能システム科学専攻."— Presentation transcript:

1 1/23 Ant Colony Optimization for Hyperbox Clustering and its Application to HPV Virus Classification ハイパーボックス・クラスタリングのためのア ント・コロニ最適化と HPV ウィルス判別への応 用 知能システム科学専攻 廣田研究室 Guilherme Novaes RAMOS 04M35692

2 2/23 Pattern recognition Text Speech Image Customer profile Chemical compounds Microarrays … Motivation

3 3/23 Human PapillomaVirus HPV virus HPV symptom Cervical HPVs Oral HPVs Research is not very advanced Proper treatment Local risk profile Cancer Early diagnosis

4 4/23 Proposal Hyperbox

5 5/23 Background: Ant Colony Optimization Dorigo [IEEE, 97] Characteristics Versatile Robust Population based 1/3

6 6/23 33 Background: Hyperboxes Simpson [91] Defines a region in an n-dimensional space Described by 2 vectors Simplest classifier If x  H 1 Then x  Class 1 2/3

7 7/23 Background: Existing applications ACO Cemetery approach Partition matrix Hyperbox Min-max fuzzy neural networks Pattern classification Clustering Classifiers 3/3

8 8/23 Hyperbox clustering with Ant Colony Optimization Ants scatter hyperboxes in the feature space Objective: maximize hyperbox density

9 9/23 HACO Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Load data Define C Initialize pheromone Y N 1/6 Define Clusters

10 10/23 HACO ExploitationExploration Probability Assign hyperbox 2/6 Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters

11 11/23 HACO Hyperbox density Generate neighbor Change solution N Y Probability Density? 3/6 Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters

12 12/23 HACO  ij : pheromone value  : trail persistance  best : hyperbox density of best solution 4/6 Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters

13 13/23 HACO Fitness (density) Number of iterations Comparison with previous solutions … 5/6 HACO ACO Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters Density Iteration Fitness

14 14/23 HACO Overlapping Nearest neighbor 6/6 Initialization Start Build solution Local optimization Update pheromone Criteria? Stop Y N Define Clusters

15 15/23 Specifications Pentium M 1.6GHz, 512 MB of RAM C++ Suse Linux Data sets 3 computer generated HPV Experiments

16 16/23 Experiments - Dataset 1 1/6 FCM ACO HACO 150 samples, 2 dimensions NN

17 17/23 Experiments - Dataset 2 2/6 FCM ACO HACO 302 samples, 2 dimensions NN

18 18/23 Experiments - Dataset 3 3/6 FCM ACO HACO 600 samples, 2 dimensions NN

19 19/23 Experiments - Results 4/6 NNFCMACO TimeFitness Accuracy TimeFitnessAccuracyTimeFitnessAccuracy DS1 0.02 889.5 100%0.04913.674%6.1477.570.7% DS2 0.05 19164.6 100%0.124457.448.7%16.211089.256% DS3 0.10594.1100%0.21743.7100%334754.672.2% HACO D = 1D = 2D = 3 TimeFitness Accuracy TimeFitnessAccuracyTimeFitnessAccuracy DS1 3.5889.5100%1889.5100%1489.8965.3% DS2 33.8 19164.6 100%9.919164.6100%6.119164.6100% DS3 33.8594.1100%10594.1100%5.1594.1100%

20 20/23 Experiments - HPV Data Department of stomatology Dentistry School Characteristics 199 samples 42 attributes 5/6

21 21/23 Experiments - Results 6/6 NNFCMACO TimeFitness Accuracy TimeFitnessAccuracyTimeFitnessAccuracy HPV 0.30 49534.3 68.4%0.7021880.350.8%42.012452.452.6% HACO D = 1D = 2D = 3 TimeFitness Accuracy TimeFitnessAccuracyTimeFitnessAccuracy HPV 5.80 25555.1 71.4%231918.168.1%131522.167.6%

22 22/23 Conclusions Pattern recognition Probable HPV risk profile Advantages Higher accuracy Competitive runtime ACO (HPV) 29.1% - 36.3% more accurate 82.6% - 97.6% faster

23 23/23 Perspectives Test with larger data sets Automatic parameter setting Hyperbox shape optimization Compare/Apply other tools GA SOM …

24 24/23 Thank you for your attention

25 25/23 HPV statistics Over 100 viruses 500,000 new cases of cancer diagnosed each year 200,000 deaths each year

26 26/23 Parameters

27 27/23 Hyperbox Number  : search space ratio n : attributes D k : k-th dimension length x k : k-th attribute of samples 1/6


Download ppt "1/23 Ant Colony Optimization for Hyperbox Clustering and its Application to HPV Virus Classification ハイパーボックス・クラスタリングのためのア ント・コロニ最適化と HPV ウィルス判別への応 用 知能システム科学専攻."

Similar presentations


Ads by Google