Download presentation
Presentation is loading. Please wait.
Published byLoreen Moody Modified over 9 years ago
1
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §6.3 Improper Integrals
2
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §6.2 → Numerical Integration Any QUESTIONS About HomeWork §6.2 → HW-02 6.2
3
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 3 Bruce Mayer, PE Chabot College Mathematics Evaluating Improper Integrals Use LIMITS to Evaluate Improper Integrals. Given AntiDerivative: And assuming M, N are real Numbers
4
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 4 Bruce Mayer, PE Chabot College Mathematics Example ImProper Population The Tasmanian Devil Population on The Isolated Australian Island of Tasmania CHANGES according to the Model Where P ≡ the Tasmanian Devil Population in k-Devils t ≡ the Number Years after Calendar year 2000; i.e; t = t calendar − 2000
5
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 5 Bruce Mayer, PE Chabot College Mathematics Example ImProper Population Then Calculate and Explain SOLUTION: First Convert to From La Grange Notation to the MORE ILLUMINATING Lebniz form
6
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 6 Bruce Mayer, PE Chabot College Mathematics Example ImProper Population The first Eqn is a Definite integral of a type calculated many times in MTH15 By the Transitive Property So
7
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 7 Bruce Mayer, PE Chabot College Mathematics Example ImProper Population INTERPRETATION: In the Yr 2001 the TD population will have Increased by about 961 Devils compared to Yr 2000 Now, assuming the Model Holds over Loooong Time-Scales AntiDerivating
8
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 8 Bruce Mayer, PE Chabot College Mathematics Example ImProper Population Or INTERPRETATION: If the Model holds for a Long Period of Time then the Tasmanian Devil Population will STABILIZE at about 12.5 k-Devils above theY2k Level
9
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 9 Bruce Mayer, PE Chabot College Mathematics Common ImProper Integ Limit Negative Exponentials Often Occur in ImProper Integrals. A useful limit in these Circumstances: For any Power, p, and Positive Number, k
10
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 10 Bruce Mayer, PE Chabot College Mathematics Example UseFul Limit Use Then the AUC for Find By Repeated Use of Integration by Parts The Limit:
11
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 11 Bruce Mayer, PE Chabot College Mathematics ImProper Integral Divergence ImProper Integration Often Times FAILS to Return a Finite Value, that is: Example: Find the AUC for Thus this ImProper Integral DIVERGES
12
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 12 Bruce Mayer, PE Chabot College Mathematics Example Double Infinity Find the value of this ImProper Integral SOLUTION: The integral can be divided into TWO separate integrals, EACH containing ONE infinite limit of integration. From the definition, we choose middle- Limit c = 0 for convenience Note that c Can be ANY RealNumber
13
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 13 Bruce Mayer, PE Chabot College Mathematics Example Double Infinity Then the “Split” Integral Now Engage the SubStitution Then And then the Limits
14
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 14 Bruce Mayer, PE Chabot College Mathematics Example Double Infinity Making the SubStitution Can Drop ABS bars as 1 & M & N are POS
15
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 15 Bruce Mayer, PE Chabot College Mathematics Example Double Infinity Continuing the Reduction So
16
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 16 Bruce Mayer, PE Chabot College Mathematics Example Double Infinity But BOTH of the Limits DIVERGE Since the ∞ is NOT a Number, then the subtraction, ∞ − ∞, is MEANINGLESS Thus This Expression has NO Number Value
17
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 17 Bruce Mayer, PE Chabot College Mathematics Example Double Disaster Be CareFul in this Case – It’s Easy to Make a Disastrous Mistake From the Previous Reduction Now since M & N are DUMMY Variables it can be written that
18
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 18 Bruce Mayer, PE Chabot College Mathematics Example Double Disaster Using M=P=N write the Limits Using above in the Reduction ReCall (InCompletely) the Limit Property
19
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 19 Bruce Mayer, PE Chabot College Mathematics Example Double Disaster Apply the Difference-of-Limits Property Thus One might be Tempted to Say
20
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 20 Bruce Mayer, PE Chabot College Mathematics Example Double Disaster Q) What’s WRONG with Assessment? A) ReCall From Limits Properties the Qualifying Statement IF these Limit EXIST (only) THEN In the current case, BOTH individual Limits did NOT exist
21
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 21 Bruce Mayer, PE Chabot College Mathematics Example Double Disaster Deceptive Plot Suggests Net AUC = 0 Infinite AreasNegative Area Positive Area It looks Like The “Equal but Opposite” areas “Cancel Each Other Out”, adding to ZERO → WRONG!
22
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 22 Bruce Mayer, PE Chabot College Mathematics Example Semi-Infinity Consider the same Fcn: z = 0→+∞ By the Same SubStitution Thus the “Semi-Infinite” ImProper Integral DIVERGES
23
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 23 Bruce Mayer, PE Chabot College Mathematics Example Semi-Infinity Infinite Area Area_Under_Curve_Hatch_Plot_BMayer_1401.mn
24
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 24 Bruce Mayer, PE Chabot College Mathematics MuPAD Code fOFx := fOFx := x^3/(x^4 + 1) plot(fOFx, x=-50..50, GridVisible = TRUE, LineWidth = 0.04*unit::inch, Width = 320*unit::mm, Height = 180*unit::mm, AxesTitleFont = ["sans-serif", 24], TicksLabelFont=["sans-serif", 16], BackgroundColor = RGB::colorName([0.8, 1, 1])) Plot the AREA under the Integrand Curve (a very cool plot don't you think...) Need to CHECK Graph Box: Scene2D→BackGroundColor fArea := plot::Function2d(fOFx, x = 0..50, GridVisible = TRUE): plot(plot::Hatch(fArea), fArea, Width = 320*unit::mm, Height = 180*unit::mm, AxesTitleFont = ["sans-serif", 24], TicksLabelFont=["sans-serif", 12], LineWidth = 0.04*unit::inch,BackgroundColor = RGB::colorName([0.8, 1, 1]) )
25
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 25 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §6.3 P34 → Professorial Endowed Chair P42 → Waste Accumulation
26
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 26 Bruce Mayer, PE Chabot College Mathematics All Done for Today Break at Asymptote Location
27
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 27 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix –
28
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 28 Bruce Mayer, PE Chabot College Mathematics
29
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 29 Bruce Mayer, PE Chabot College Mathematics
30
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 30 Bruce Mayer, PE Chabot College Mathematics
31
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 31 Bruce Mayer, PE Chabot College Mathematics
32
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 32 Bruce Mayer, PE Chabot College Mathematics
33
BMayer@ChabotCollege.edu MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 33 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE MTH15 13Jan14 Area_Under_Curve_Hatch_Plot_BMayer_1401.mn Plot the Integrand fOFx := ln(x)/x^2 int(ln(x)/x^2, x) AUC = int(ln(x)/x^2, x=1..infinity) AUC = int(ln(x)/x^2, x=1..1E6) Plot the AREA under the Integrand Curve CHECK Graph Box: Scene2D→BackGroundColor fArea := plot::Function2d(fOFx, x = 1..20, GridVisible = TRUE): plot(plot::Hatch(fArea), fArea, Width = 320*unit::mm, Height = 180*unit::mm, AxesTitleFont = ["sans-serif", 24], TicksLabelFont=["sans-serif", 16], LineWidth = 0.04*unit::inch,BackgroundColor = RGB::colorName([0.8, 1, 1]) )
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.