Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 2: Addition (and free abelian groups) of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology:

Similar presentations


Presentation on theme: "Lecture 2: Addition (and free abelian groups) of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology:"— Presentation transcript:

1 Lecture 2: Addition (and free abelian groups) of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology Target Audience: Anyone interested in topological data analysis including graduate students, faculty, industrial researchers in bioinformatics, biology, computer science, cosmology, engineering, imaging, mathematics, neurology, physics, statistics, etc. Isabel K. Darcy Mathematics Department/Applied Mathematical & Computational Sciences University of Iowa http://www.math.uiowa.edu/~idarcy/AppliedTopology.html

2 A free abelian group generated by the elements x 1, x 2, …, x k consists of all elements of the form n 1 x 1 + n 2 x 2 + … + n k x k where n i are integers. Z = The set of integers = { …, -2, -1, 0, 1, 2, …} = the set of all whole numbers (positive, negative, 0) Addition: (n 1 x 1 + n 2 x 2 + … + n k x k ) + (m 1 x 1 + m 2 x 2 + … + m k x k ) = (n 1 + m 1 ) x 1 + (n 2 + m 2 )x 2 + … + (n k + m k )x k

3 Formal sum: 4 cone flower + 2 rose + 3 cone flower + 1 rose = 7 cone flower + 3 rose Will add video clips when video becomes available.

4 A free abelian group generated by the elements x 1, x 2, …, x k consists of all elements of the form n 1 x 1 + n 2 x 2 + … + n k x k where n i are integers. Z = The set of integers = { …, -2, -1, 0, 1, 2, …} = the set of all whole numbers (positive, negative, 0) Addition: (n 1 x 1 + n 2 x 2 + … + n k x k ) + (m 1 x 1 + m 2 x 2 + … + m k x k ) = (n 1 + m 1 ) x 1 + (n 2 + m 2 )x 2 + … + (n k + m k )x k

5 A free abelian group generated by the elements x 1, x 2, …, x k consists of all elements of the form n 1 x 1 + n 2 x 2 + … + n k x k where n i are integers. Example: Z[x 1, x 2 ] 4x 1 + 2x 2 x 1 - 2x 2 -3x 1 kx 1 + nx 2 Z = The set of integers = { …, -2, -1, 0, 1, 2, …}

6 A free abelian group generated by the elements x 1, x 2, …, x k consists of all elements of the form n 1 x 1 + n 2 x 2 + … + n k x k where n i are integers. Example: Z[x, x ] 4 ix + 2 I x – 2 i -3 x k + n iii Z = The set of integers = { …, -2, -1, 0, 1, 2, …}

7 A free abelian group generated by the elements x 1, x 2, …, x k consists of all elements of the form n 1 x 1 + n 2 x 2 + … + n k x k where n i are integers. Example: Z[x 1, x 2 ] 4x 1 + 2x 2 x 1 - 2x 2 -3x 1 kx 1 + nx 2 Z = The set of integers = { …, -2, -1, 0, 1, 2, …}

8 Addition: (n 1 x 1 + n 2 x 2 + … + n k x k ) + (m 1 x 1 + m 2 x 2 + … + m k x k ) = (n 1 + m 1 ) x 1 + (n 2 + m 2 )x 2 + … + (n k + m k )x k Example: Z[x 1, x 2 ] (4x 1 + 2x 2 ) + (3x 1 + x 2 ) = 7x 1 + 3x 2 (4x 1 + 2x 2 ) + (x 1 - 2x 2 ) = 5x 1

9 Addition: (n 1 x 1 + n 2 x 2 + … + n k x k ) + (m 1 x 1 + m 2 x 2 + … + m k x k ) = (n 1 + m 1 ) x 1 + (n 2 + m 2 )x 2 + … + (n k + m k )x k Example: Z[x, x 2 ] (4x + 2x 2 ) + (3 x + x 2 ) = 7 x + 3x 2 (4x 1 + 2x 2 ) + (x 1 - 2x 2 ) = 5x 1

10 Addition: (n 1 x 1 + n 2 x 2 + … + n k x k ) + (m 1 x 1 + m 2 x 2 + … + m k x k ) = (n 1 + m 1 ) x 1 + (n 2 + m 2 )x 2 + … + (n k + m k )x k Example: Z[x 1, x 2 ] (4x 1 + 2x 2 ) + (3x 1 + x 2 ) = 7x 1 + 3x 2 (4x 1 + 2x 2 ) + (x 1 - 2x 2 ) = 5x 1

11 v = vertexe = edgef = face Example: 4 vertices + 5 edges + 1 faces 4v + 5e + f.

12 v = vertexe = edge Example 2: 4 vertices + 5 edges 4v + 5e

13 v 1 + v 2 + v 3 + v 4 + e 1 + e 2 + e 3 + e 4 + e 5 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

14 v 1 + v 2 + v 3 + v 4 in Z[v 1, v 2,, v 3, v 4 ] e 1 + e 2 + e 3 + e 4 + e 5 in Z[e 1, e 2,, e 3, e 4, e 5 ] e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

15 Technical note: In graph theory, the cycle also includes vertices. I.e, this cycle in graph theory is the path v 1, e 1, v 2, e 2, v 3, e 3, v 1,. Since we are interested in simplicial complexes (see later lecture), we only need the edges, so e 1 + e 2 + e 3 is a cycle. Note that e 1 + e 2 + e 3 is a cycle. e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

16 Technical note: In graph theory, the cycle also includes vertices. I.e, the cycle in graph theory is the path v 1, e 1, v 2, e 2, v 3, e 3, v 1,. Since we are interested in simplicial complexes (see later lecture), we only need the edges, so e 1 + e 2 + e 3 is a cycle. Note that e 3 + e 4 + e 5 is a cycle. Note that e 1 + e 2 + e 3 is a cycle. e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

17 Note that – e 3 + e 5 + e 4 is a cycle. e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

18 Note that e 1 + e 2 + e 3 is a cycle. Note that – e 3 + e 4 + e 5 is a cycle. e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 eiei Objects: oriented edges

19 Note that e 1 + e 2 + e 3 is a cycle. Note that – e 3 + e 5 + e 4 is a cycle. e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 eiei Objects: oriented edges in Z[e 1, e 2, e 3, e 4, e 5 ]

20 Note that e 1 + e 2 + e 3 is a cycle. Note that – e 3 + e 5 + e 4 is a cycle. e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 eiei Objects: oriented edges in Z[e 1, e 2, e 3, e 4, e 5 ] – e i

21 (e 1 + e 2 + e 3 ) + (–e 3 + e 5 + e 4 ) = e 1 + e 2 + e 5 + e 4 e2e2 e1e1 e5e5 e4e4 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

22 e 1 + e 2 + e 3 + e 1 + e 2 + e 5 + e 4 = 2e 1 + 2e 2 + e 3 + e 4 + e 5 e 1 + e 2 + e 5 + e 4 + e 1 + e 2 + e 3 = 2e 1 + 2e 2 + e 3 + e 4 + e 5 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

23 The boundary of e 1 = v 2 – v 1 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

24 The boundary of e 2 = v 3 – v 2 The boundary of e 3 = v 1 – v 3 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 The boundary of e 1 + e 2 + e 3 = v 2 – v 1 + v 3 – v 2 + v 1 – v 3 = 0

25 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 Add a face

26 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 Add an oriented face

27 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4

28 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 Note that the boundary of this face is the cycle e 1 + e 2 + e 3

29 e2e2 e1e1 e5e5 e4e4 e3e3 v1v1 v2v2 v3v3 v4v4 Simplicial complex

30 v2v2 e2e2 e1e1 e3e3 v1v1 v3v3 2-simplex = oriented face = (v i, v j, v k ) Note that the boundary of this face is the cycle e 1 + e 2 + e 3 1-simplex = oriented edge = (v j, v k ) Note that the boundary of this edge is v k – v j e vjvj vkvk 0-simplex = vertex = v

31 3-simplex = (v 1, v 2, v 3, v 4 ) = tetrahedron 4-simplex = (v 1, v 2, v 3, v 4, v 5 ) v4v4 v3v3 v1v1 v2v2


Download ppt "Lecture 2: Addition (and free abelian groups) of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology:"

Similar presentations


Ads by Google