Download presentation
Presentation is loading. Please wait.
Published byDouglas Hart Modified over 9 years ago
1
Section 2.4 One-Sided Limits and Limits at Infinity النهايات أحادية الجانب والنهايات عند ما لا نهاية 1
2
2
3
بشكل حدسي 3
4
4
5
5
6
6
7
xsin(1/x) 0.1-0.5440211109 0.01-0.5063656411 0.0010.8268795405 0.0001-0.3056143889 0.000010.0357487980 0.000001-0.3499935022 0.00000010.4205477932 0.000000010.9316390271 -0.10.5440211109 0.01-0.5063656411 -0.001-0.8268795405 0.0001-0.3056143889 0.00001--0.0357487980 0.000001-0.3499935022 0.0000001--0.4205477932 0.00000001-0.9316390271- متَذَبذُبة 7
8
8
9
x1/x 100.1 1000.01 10000.001 100000.0001 1000000.00001 10000000.000001 10-0.1- 100-0.01- 1000-0.001- 10000-0.0001- 100000-0.00001- 1000000-0.000001- 9
10
10
11
11
12
12
13
13
14
14
15
A QUICK METHOD FOR FINDING LIMITS OF RATIONAL FUNCTIONS AS X→+∞ OR X→-∞ 15
16
16
17
The graph appears to approach the horizontal line y = 0, as x →+∞and as x →−∞. In this case, we call y = 0 a horizontal asymptote. 17
18
18
19
End of the section 19
20
SECTION 1.5 LIMITS INVOLVING INFINITY; ASYMPTOTES النهايات المتضمنة ما لانهاية وخطوط التقارب When this occurs, we say that the line x = 0 is a vertical asymptote. we say that the line x = 5 is a vertical asymptote. we say that the line x = -2 and x=3 are vertical asymptotes. ( نهاية سهلة معادة ) 20
21
xsin(1/x) 0.1-0.5440211109 0.01-0.5063656411 0.0010.8268795405 0.0001-0.3056143889 0.000010.0357487980 0.000001-0.3499935022 0.00000010.4205477932 0.000000010.9316390271 -0.10.5440211109 -0.010.5063656411 -0.001-0.8268795405 -0.00010.3056143889 -0.00001-0.0357487980 -0.0000010.3499935022 -0.0000001-0.4205477932 -0.00000001-0.9316390271 xsin(1/x) 0.1-0.5440211109 0.01-0.5063656411 0.0010.8268795405 0.0001-0.3056143889 0.000010.0357487980 0.000001-0.3499935022 0.00000010.4205477932 0.000000010.9316390271 -0.10.5440211109 0.01-0.5063656411 -0.001-0.8268795405 0.0001-0.3056143889 0.00001--0.0357487980 0.000001-0.3499935022 0.0000001--0.4205477932 0.00000001-0.9316390271- 21
22
22
23
23
24
24
25
25
26
26
27
27
28
28
29
29
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.