Download presentation
Presentation is loading. Please wait.
Published byNoah Holland Modified over 9 years ago
1
Coulomb corrections to R-correlation in the polarized neutron decay Alexey Pak University of Alberta, 2005 Lake Louise Winter Institute 2005, February 25 In collaboration with A. Czarnecki
2
Lake Louise Winter Institute 2005, February 25 Neutron beta-decay: probing C,P,T-invariance snsn p pepe sese n e p Observable T-violating correlations: R (T,P): s n [p e × s e ] D (T):s n [p p × p e ] V (T,P):s n [p p × s e ] L (T):p p [p e × s e ] d ~ (1 + b m/E + A (s n p e )/p + G (s e p e )/E + N (s n s e ) + Q (s e p e )(s n p e )/E(E + m) + R (s e [s n × p e ])/E ) Energy scales: m = 0.511 MeV, M = 1.2933 MeV, M p = 938.27 MeV
3
Lake Louise Winter Institute 2005, February 25 Neutron beta-decay law General Hamiltonian of the neutron beta-decay: H = ( p n )(C S e + C S ’ e ) + ( p n )(C V e + C V ’ e ) + 1/2( p n )(C T e + C T ’ e ) - ( p n )(C A e + C A ’ e ) + ( p n )(C P e + C P ’ e ) + H.C. Standard Model: C S = C S ’ = C T = C T ’ = C P = C P ’= 0 C V = -C V ’ = -G F /√2 C A = -C A ’ = g A G F / √2 g A ≈ 1.26 due to QCD corrections (V-A) law g W u d u d u d R≠0 may indicate Scalar and Tensor interactions
4
Lake Louise Winter Institute 2005, February 25 Measurements of R-type correlations DecayCorrelationResult ×10 3 Location 19 Ne→ 19 Fe, s Ne [p e ×s e ]-79 ± 53Princeton 0 → -,p s [p p ×s p ]-100 ± 70BNL 0 → -,p s [p p ×s p ]-94 ± 60CERN + →e +, e, s [p e ×s e ]7 ± 23SIN 8 Li→ 8 Be,e -, e s Li [p e ×s e ]1.6 ± 2.2PSI n→p,e, e s n [p e ×s e ]? ± 5PSI (2005) S = Im[(C S + C S ’)/C A ] T = Im[(C T + C T ’)/C A ] Experimental constraints on S and T (1 bands are shown): R = 2 Im[ 2(C T C A ’*+ C T ’C A *) + (C S C A ’*+ C S ’C A *- C V C T ’*- C V ’C T *)] - 2 m/p e Re[ 2(C T C T ’*- C A C A ’*) + (C S C T ’*+ C S ’C T *- C V C A ’*- C V ’C A *)]
5
Lake Louise Winter Institute 2005, February 25 Theoretical predictions in SM n p e 0-th order: R = 0 1-st order: R = -2G F 2 (g A 2 - g A )m/p e = G F 2 (1 + 3g A 2 ) R (1) ~ 8.3×10 -4 m/p e The origin of this result and the factor (g A 2 - g A ): J = (J 0,J z,J +1,J -1 ) - lepton current, proton at rest, nucleons - plane waves d ~ |‹p|H|n›| 2 = |‹p|H|n›| 2 V + |‹p|H|n›| 2 A + |‹p|H|n›| 2 VA After integrating over neutrino directions: |‹p|H|n›| 2 V = 2g 2 |J 0 | 2 = 2g 2 ( e e ) |‹p|H|n›| 2 A = 2g 2 g A 2 (|J z | 2 + 2|J +1 | 2 ) = 2g 2 g A 2 (( + e e )+ 2( + e z ) e )) |‹p|H|n›| 2 VA = -2g 2 g A (iJ 0 J z * + c.c.) = -4g 2 g A + e z e ) Coulomb-distorted wavefunction (exact potential solutions at R→0): + e z e = F(Z,E)( - v z /c + p z ( e p) + (1 - 2 ) 1/2 /E [p×[ e ×p]] z - /E [ e ×p] z ) + e e = F(Z,E)(1 – ( e v)/c) – no contribution to R
6
Lake Louise Winter Institute 2005, February 25 Types of further corrections R ≈ 8.3×10 -4 m/p e, R (1) = -2G F 2 (g A 2 - g A ) m/p e R (2) = R (1) (1 + R (kinematic) + R (radiative) + R (finite size) ) / = 2.3×10 -3 – further radiative corrections m/M p = 5×10 -4 – proton recoil effects = 7.29×10 -3 – corrections to lepton wavefunctions p R N ~ 10 -3 – higher angular momenta emissions (for non-point-like nucleons) n p or p S z = 1/2 S z = ±1/2 ((L e + S e ) + (L + S )) z = J = 0,1 L e, - not constrained 1) Higher L (Dirac quantum number ) suppressed by centrifugal effect 2) n→p transition only favors certain -matrix combinations (v p << c) “Allowed approximation”
7
Lake Louise Winter Institute 2005, February 25 Finite nucleon size effects “normal approximation”: leading orders in v N /c, R N / e nuclear structure: -moments - calculated in MIT bag model MIT bag model: non-interacting m=0 quarks constant pressure on the spherical bag boundary lowest levels identified as N- prediction: g A = 1.09 ‹p| + (i J Y Jm )*|n› = (C.-G.C.) ‹Y J › ‹p| + (i J Y Jm )*|n› = (C.-G.C.) ‹ Y J › ‹p| + (i L T L Jm ) † |n› = (C.-G.C.) ‹ T L J › ‹p| + (i L T L Jm ) † |n› = (C.-G.C.) ‹ T L J › (C.-G.C.) = ‹½ (M’) J(m) | ½ (½)› lepton wavefunctions: : free Bessel functions e: numerical solutions for spherically-symmetrical potential matching inside and outside p
8
Lake Louise Winter Institute 2005, February 25 Finite nucleon size effects p e, MeV/c R (finite size) d = dE d × 2 g 2 ( M - E) 2 =±1/2 = ±1/2 × | =±1, ±2,… J = 0,1 e -i A* J J -1 ‹1/2( )1/2( )|J( + )› ‹I’(M’)J( + )|I(M)›| 2 Expansion in terms of nuclear momenta (E.Konopinski):
9
Lake Louise Winter Institute 2005, February 25 Proton recoil effects Including higher powers of m/M n, M/M n, p e /M n, we obtain: R (kinem) = - (E 2 (5 + 11g A ) + M 2 (2 + 8g A ) – ME (7 + 13g A ) – 6g A m 2 ) / (6g A ( M - E) M n ) p e, MeV/c R (kinematic)
10
Lake Louise Winter Institute 2005, February 25 Radiative corrections Following diagrams are considered with the Coulomb-distorted electron wavefunction (ultraviolet divergence cut at = 81 GeV) n p e R (radiative) p e, MeV/c (Yokoo, Suzuki, Morita; Vogel, Werner):
11
Lake Louise Winter Institute 2005, February 25 All Coulomb corrections p e, MeV/c Depending on the experimental setup, more calculations are needed to establish the theoretical uncertainty to R-correlation. p e, MeV/c R (Coulomb)
12
Lake Louise Winter Institute 2005, February 25 Summary and conclusions Theoretical uncertainties to R-correlation in the process n→p,e -, have been analyzed, including: proton recoil radiative corrections finite nucleon size effects Current and the next generation experiments will not hit the SM background Thank you for your attention
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.