Presentation is loading. Please wait.

Presentation is loading. Please wait.

HALE UAV Preliminary Design AERSP 402B Spring 2014 Team: NSFW Nisherag GandhiThomas Gempp Doug RohrbaughGregory Snyder Steve StanekVictor Thomas SAURON.

Similar presentations


Presentation on theme: "HALE UAV Preliminary Design AERSP 402B Spring 2014 Team: NSFW Nisherag GandhiThomas Gempp Doug RohrbaughGregory Snyder Steve StanekVictor Thomas SAURON."— Presentation transcript:

1 HALE UAV Preliminary Design AERSP 402B Spring 2014 Team: NSFW Nisherag GandhiThomas Gempp Doug RohrbaughGregory Snyder Steve StanekVictor Thomas SAURON

2 Mission Statement To design a High Altitude / Long Endurance (HALE) UAV using alternative fuel sources to support homeland security efforts with a concentration in long term border security.

3 Design Changes v1 v3 v2 v4 v5 v6

4 Sauron v7

5 Design Changes – Wing and Tail

6 Design Changes – Landing Gear

7 Dimensions ParameterWingTail AirfoilSM701Jouk0015 Span (ft.)128.618.0 Reference Chord (ft.)4.02.5 Area (ft. 2 )557.545.0 Cruise C L 0.660.09 Span Efficiency1.01 Max C L 1.4 Power Generated (kW)16.93 Aspect Ratio29.6 Neutral Point Location (ft.)13.4 C.G. Location (ft.)13.2

8 Wing/Tail Lift Distribution

9 Structures – Materials HexPly M91 - Epoxy Matrix for primary aerospace structure High residual compression strength after impact (CAI) Supports automated manufacturing HexTow IM10 - Carbon Fiber 12k tow Suitable for weaving, pre- pregging, filament winding, braiding, and pultrusion Enhanced tensile properties Highest commercially available tensile strength * Avg. cost: $45/lb. M91/IM10

10 Structures – Materials Epoxy-Fiber (Prepreg) Combination (M91/IM10) Theoretical Values Cured Ply Thickness (in)~ 0.0072 Fiber Volume (%)~ 58.9 Laminate Density (g/cm 3 )~ 1.4 Laminate Modulus (GPa)~ 200 Tensile Strength (MPa)~ 3620 HexTow IM10 Carbon Fiber # of Filaments12000 Filament Diameter (microns)4.4 Tensile Strength (MPa)6964 Tensile Modulus (GPa)310 Strain (%)2.0 Density (g/cm 3 )1.79

11 Wing – Spar Design

12 Wing – Weight and Lift Distribution

13 Wing – Moment and Stress

14 Wing – Deflection

15 Wing Deflection Analysis

16 H &V Stabilizer Spar Design

17 Horizontal Stabilizer – Lift Distribution

18 H. Stabilizer – Moment and Stress

19 H. Stabilizer – Wing Deflection

20 Vertical Stabilizer – Weight and Lift Distribution

21 V. Stabilizer – Moment and Stress

22 V. Stabilizer - Deflection

23 Weight Breakdown Aircraft PartEmpty Weight (lbs) Wing126.89 Fuselage32.77 Horizontal Stabilizer10.24 Vertical Stabilizer3.98 Solar Cell87.53 Wing Spar70.38 Vertical Stab Spar0.71 Horizontal Stab Spar1.87 4 Motors16.00 Fuselage Formers15.00 Gear System40.00 Total Empty Weight404.44 ParameterEmpty Weight (lbs) Total Empty Weight404.44 Battery180.00 Payload250.00 Total834.44

24 Control Surfaces

25 Aileron Control Surface Area: 3% P cruise|61k ft = 13.8 deg/sec P stall|61k ft = 11.5 deg/sec Required Aileron Deflection =10°

26 Elevator Control Surface Area: 46.7% Pitch Rate= 9 deg/sec Required Elevator Deflection= -2.6° Lift Coefficient, C L Elevator Deflection (°) 0.11.55 0.40.90 0.660.25 1.0-0.74 1.4-2.14

27 Rudder Control Surface Area: 42.9% Rudder Deflection: 20° Maximum Sidewash: 10° Max Crosswind: 12.5 ft/s

28 Control Surface Demo

29 Airfoil Selection Wing AirfoilH&V Stabilizer Airfoil

30 Updated Drag Analysis

31 Sea Level45,000 feet61,000 feet79,000 feet Stall Speed (ft/s)37.083.9122.3188.7 Cruise Speed (ft/s)44.4100.7146.8226.5 Max Speed (ft/s)113.0191.5245.3294.0 Total Drag (lbs)18.420.322.526.9 Power Required (kW)1.052.74.38.1 Reynolds’ Number1,129,663.40626,856.80429,692.6274,504.6 C Do 0.00870.010.01050.0125 Oswald’s Efficiency0.760.730.690.63 Max L/D46.742.438.231.9

32 Updated Power Analysis

33 Takeoff ParameterSea LevelDenverAfghanistan Ground Roll [ft] V takeoff [ft/s] d ab|35ft [ft] d ab|50ft [ft] D total|35ft [ft] D total|50ft [ft] Thrust [lbs]

34 Landing ParameterSea LevelDenverAfghanistan V a [ft/s] γ a [deg] Radius [ft] Flare Height [ft] Flare Speed [ft/s] da 35ft [ft] da 50ft [ft] df [ft] V TD [ft/s] Thrust [lbs]

35 Constraint Diagram Original Current

36 Cost Analysis Fixed Costs for 5 Developmental Aircraft: –Engineering Costs: $29,869,717.35 –Flight Test Ops: $17,638,487.67 –Tooling: $4,567,827.99

37 Pricing

38 Pricing Summary 1101005001000 Design Aircraft5 Engineering Costs $ 29,869,717.35 Flight Test Ops $ 17,638,487.67 Tooling Costs $ 4,567,827.99 Manufacturing Costs $ 3,411,149.77 $ 14,924,534.27 $ 65,298,136.52 $ 183,206,365.99 $ 285,693,781.52 Quality Control Costs $ 490,688.06 $ 2,146,868.71 $ 9,393,025.19 $ 26,353,922.21 $ 41,096,561.54 Total Materials Costs $ 889,569.58 $ 2,223,923.96 $ 15,567,467.69 $ 74,872,106.51 $ 149,002,905.04 Design Materials Costs $ 741,307.99 Production Materials Costs $ 148,261.60 $ 1,482,615.97 $ 14,826,159.71 $ 74,130,798.53 $ 148,261,597.05 Total Frame Costs $ 60,725,386.10 $ 75,229,305.63 $ 146,192,608.09 $ 340,366,373.41 $ 531,727,226.80 Minimum Price Per UAV $ 60,725,386.10 $ 7,522,930.56 $ 1,461,926.08 $ 680,732.75 $ 531,727.23 * +$2M per for custom sensory packages

39 Comparison to Competitors RQ-1/MQ-1 Predator –Unit Cost: $4.03M –360 Built MQ-9 Reaper –Unit Cost: $16.9M –104 Built RQ-4 Global Hawk –Unit Cost: $131.4M –42 Built Solara 50/60 –Unit Cost: $1-2M –N/A Built

40 Questions? 14 Days ‘Til Graduation

41 Double Camera

42 Summary


Download ppt "HALE UAV Preliminary Design AERSP 402B Spring 2014 Team: NSFW Nisherag GandhiThomas Gempp Doug RohrbaughGregory Snyder Steve StanekVictor Thomas SAURON."

Similar presentations


Ads by Google