Download presentation
Presentation is loading. Please wait.
Published byFrancis Thomas Modified over 9 years ago
1
An efficient password authenticated key exchange protocol for imbalanced wireless Authors: Ya-Fen Chang, Chin-Chen Chang and Jen-Ho Yang Source: Computer Standards & Interfaces, Vol. 27, pp. 313 – 322, 2005 Reporter: Jung-wen Lo ( 駱榮問 ) Date: 2005/07/07
2
2 Introduction Bellovin-Merritt (1992) Encrypted key exchange Ding, P. Horster(1995) Password guessing attack Detectable On-line Password guessing attack Undetectable On-line Password guessing attack Off-line Password guessing attack Zhu et al. (2002) Imbalanced wireless network Under two dictionary attack by Bao (2003) Yeh et al. (2003) Vulnerable to off-line dictionary attack
3
3 Zhu et al. ’ s Protocol (2002) Server A (n,e,d,pw) Client B (pw) (n, e), r A r B, s B α=H 2 (pw, ID A,ID B,r A,r B ) z =s B e +α(mod n) z, r B α=H 2 (pw, ID A,ID B,r A,r B ) s B =(z-α) d mod n K =H 3 (s B ) c A R {0,1} l E K (c A,ID B ) K =H 3 (s B ) D K (E K (c A,ID B )) => c’ A,ID’ B check ID B ? c B =H 4 (s B ) σ’=H 5 (c’ A,c B,ID A,ID B ) H 6 (σ’) H 6 (σ’) ?= H 6 (σ) c B =H 4 (s B ) σ=H 5 (c A,c B,ID A,ID B ) {m i R Z n } 1 i N {m i e R Z n } 1 i N {H 1 (m i ’)} 1 i N check H 1 (m ’ i )?=H 1 (m i ) r A R {0,1} l
4
4 Undetectable On-line Password Guessing Attack Server A (n,e,d,pw) Attacker E (pw’) (n, e), r A r E, s E α’=H 2 (pw’, ID A,ID B,r A,r E ) z’ =s E e +α’ (mod n) z’, r E α’’=H 2 (pw, ID A,ID B,r A,r E ) s’ E = (z’-α’’) d mod n K =H 3 (s’ E ) c A R {0,1} l E K (c A,ID B ) K’ =H 3 (s E ) D K’ (E K (c A,ID B )) => c’ A,ID’ B If ID’ B = ID B => pw’=pw check H 1 (m’ i )?=H(m i ) Client B (pw) {m i e R Z n } 1 i N {H 1 (m i ’)} 1 i N m ’ i =(m i e ) d r A R {0,1} l
5
5 Yeh et al. ’ s Protocol (2003) Server A (n,e,d,pw) Client B (pw) (n, e), r A s B R Z n α=E pw (ID A,ID B,r A,s B ) z =α e mod n z (ID A,ID B,r A,s B )=D pw (z d mod n) c B =H 3 (s B ) σ=H 4 (r A,c B,ID A,ID B ) E σ (ID B ) c B =H 3 (s B ) σ’=H 4 (r A,c B,ID A,ID B ) check D σ’ (E σ (ID B )) ?= ID B H 6 (σ’) H 6 (σ’) ?= H 6 (σ) {m i R Z n } 1 i N {m i e R Z n } 1 i N {H 1 (m i ’)} 1 i N m ’ i =(m i e ) d check H 1 (m’ i )?=H(m i ) r A R {0,1} l
6
6 Cryptanalysis of Yeh et al. ’ s protocol Off-line dictionary attack Server A (n,e,d,pw) Client B (pw) (n’, e’), r E s B α=E pw (ID A,ID B,r E,s B ) z =α e’ mod n’ z α= z d’ mod n D pw’ (α)?=(ID A,ID B,r E,s B ) {m i R Z n } 1 i N {m i e’ R Z n } 1 i N {H 1 (m i ’)} 1 i N Attacker E (n’,e’,d’) r E R {0,1} l
7
7 Proposed scheme Server A (p,q,pw) Client B (pw) E pw (r A ) s B R Z n σ =F 1 (ID A,ID B,r A,s B ) α=F 2 (r A,s B,σ) z =s B 2 mod n z,α check F 3 (σ’) ?= F 3 (σ) r A = D pw (E pw (r A )) F 3 (σ’) r A R {0,1} l c 1 =z (p+1)/4 mod p c 2 =(p-z (p+1)/4 ) mod p c 3 =z (q+1)/4 mod q c 4 =(q-z (q+1)/4 ) mod q x=q(q -1 mod p) y=p(p -1 mod q) β 1 =(xc 1 +yc 3 ) mod n β 2 =(xc 1 +yc 4 ) mod n β 3 =(xc 2 +yc 3 ) mod n β 4 =(xc 2 +yc 4 ) mod n s ’ B =β i, i=1,2,3,4 σ ’=F 1 (ID A,ID B,r A,s’ B ) α’=F 2 (r A,s’ B, σ ’) α’ ? = α ≠ abort ※ n=p*q p ≡ 3 (mod 4) q ≡ 3 (mod 4)
8
8 Proposed scheme(sample) Server A (p,q,pw) Client B (pw) E pw (r A ) s B R Z n =3 σ =F 1 (ID A,ID B,r A,s B ) α=F 2 (r A,s B,σ) z =s B 2 mod n=9 z,α check F 3 (σ’) ?=F 3 (σ) r A = D pw (E pw (r A )) r A R {0,1} l =6 c 1 =z (p+1)/4 mod p=81 mod 7=4 c 2 =(p-z (p+1)/4 ) mod p=7-81 mod 7=3 c 3 =z (q+1)/4 mod q=729 mod 11=5 c 4 =(q-z (q+1)/4 ) mod q=11-729 mod 11=8 x=q(q -1 mod p)=11×2=22 y=p(p -1 mod q)=7×8=56 β 1 =(xc 1 +yc 3 ) mod n=(22×4+56×5) mod 77=60 β 2 =(xc 1 +yc 4 ) mod n=(22×4+56×8) mod 77=74 β 3 =(xc 2 +yc 3 ) mod n=(22×3+56×5) mod 77=38 β 4 =(xc 2 +yc 4 ) mod n=(22×3+56×8) mod 77=52 s ’ B =β i, i=1,2,3,4 σ ’=F 1 (ID A,ID B,r A,s’ B ) α’=F 2 (r A,s’ B, σ ’) α ’ ? = α ≠ abort ※ n=p*q=77 p ≡ 3 (mod 4)=7 q ≡ 3 (mod 4)=11 F 3 (σ’)
9
9 Security Analysis A malicious user E wants to mount on-line password- guessing attacks on the proposed protocol E impersonates B => Can not derive r A A malicious user E wants to mount off-line password- guessing attacks on the proposed protocol E eavesdrops and records the transmitted data E pw (r A ), α, z and h(σ) E impersonates A to get the essential information => Can not derive s B E wants to get the session key σ => Protected by hash function E guesses B ’ s password by impersonating A => B will not keep on sending the request all the time => When server terminates the protocol several times in a short time, B will detect. Replay attack => Easily detect, because r A are different all the time
10
10 Performance Analyses (1/2) The numbers of operations for different computation types Participants (Computation type)AB Zhu et al. ’ s protocol Exponential computationN+1 Symmetric en(de)cryption11 HashN+5 Yeh et al. ’ s protocol Exponential computationN+1 Symmetric en(de)cryption22 HashN+3 Our proposed protocol Exponential computation20 Symmetric en(de)cryption11 Hash8/4/23
11
11 Performance Analyses (2/2) The numbers of transmissions of the participants Participants Protocol AB Zhu et al. ’ s protocol33 Yeh et al. ’ s protocol33 Our proposed protocol21
12
12 Conclusion Mutual authentication A and B authenticate each other Explicit key authentication A is assured B has computed the exchanged key Computation efficiency the computation load of the wireless device is light Power saving the power consumption of the wireless device in our protocol is few Confirmation and completeness Withstand password-guessing attacks
13
13 Comments E impersonates B Detectable on-line guessing attack Authoir: A will discover it E eavesdrops and records the transmitted data E pw (r A ), α, z and h(σ) zs B + pw ’ r ’ A σ’ α’ IF α’=α THEN pw’=pw Performance analysis unfair Interactive protocol Hash # error in Server A 2 ×(F 1 +F 2 )+F 3
14
14 Rabin Public Key Cryptosystem(1979) - 錄自詹進科老師講義 Probabilistic encryption systems Rabin 的想法 是一個密文可以對應到四個明文。因此,在加密時必須加入一些有意義且 易於分辨的訊息於明文中,使得解密時能夠明確地還原出原來的明文 方法簡介 : 選定 n=p*q; 其中 p 與 q 是大質數。令明文為 M ,密文為 C ,公開加密金匙為 (b,n) ,秘密解密金匙為 (p,q) 。 [ 加密程序 ]: C = M * (M + b) mod n , 其中 b 是亂數。 [ 解密程序 ]: 根據上式可知 M 2 + M*b - C = 0 mod n. 故明文可由下述四者之一算出 : M = -b/2 ( (b/2) 2 +C ) 1/2 mod p M = -b/2 ( (b/2) 2 +C ) 1/2 mod q
15
15 Rabin Public Key Cryptosystem Key generation 選定 n=p*q; 其中 p 與 q 是大質數, p≡ q ≡ 3 (mod 4) 令明文為 M ,密文為 C , A 的公開加密金匙為 n ,秘密解密金匙為 (p,q) 。 [ 加密程序 ]: B -> A C = M 2 mod n [ 解密程序 ]: ap+bq=1 by Euclidean algorithm r = C (p+1)/4 mod p s = C (q+1)/4 mod q x = (aps+bqr) mod n y = (aps-bqr) mod n 故明文可由下述四者之一算出 : m 1 = x m 2 =- x mod n m 3 = -y m 4 = -y mod n
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.