Download presentation
Presentation is loading. Please wait.
Published byVanessa Lucas Modified over 9 years ago
1
S. ChelkowskiSlide 1ET Meeting, Hannover 01/2009
2
Overview Introduction ET Sagnac topology Sagnac effect Consequences for ET with Sagnac topology Static effects Noise couplings Frequency noise Seismic noise Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 2
3
ET S. ChelkowskiET Meeting, Hannover 01/2009Slide 3
4
ET Triangular geometry Topology currently undefined Michelson,Mach- Zehnder, Sagnac, etc Configuration currently undefined S. ChelkowskiET Meeting, Hannover 01/2009Slide 4
5
Sagnac topology S. ChelkowskiET Meeting, Hannover 01/2009Slide 5 Non-zero area SagnacNear-zero area Sagnac
6
Sagnac interferometer and effect Named after Georges Sagnac Correctly explained only with General Relativity Rotational induced phase shift S. ChelkowskiET Meeting, Hannover 01/2009Slide 6 Original experimental setup from 1913 Ref: [1] G. B. Malykin, "The Sagnac effect: correct and incorrect explanations", Physics-Uspekhi, Vol.43, (2000), 1229-1252 [2] G. E. Stedman, "Ring-laser tests of fundamental physics and geophysics", Reports on Progress in Physics, Vol.60, (1997), 615-688
7
Location dependency S. ChelkowskiET Meeting, Hannover 01/2009Slide 7 Earth rotation Detector location Equator
8
Sagnac effect today Lasergyroscopes are used for geodesic measurements to determine variations in the Earth rotation rate Also used to do seismometry Current sensitivity: S. ChelkowskiET Meeting, Hannover 01/2009Slide 8 Images with courtesy Laser Gyro Group Wettzell, Germany
9
Sagnac effect in ET S. ChelkowskiET Meeting, Hannover 01/2009Slide 9 Non-zero area SagnacNear-zero area Sagnac AA = B - C B C
10
Sagnac effect in ET S. ChelkowskiET Meeting, Hannover 01/2009Slide 10 Analysis involves two effects 1.Static effects due to Earth’s rotation Much more sensitive than current Laser gyros 2.Noise couplings Frequency noise Seismic noise Beam jitter noise
11
Static Sagnac effect S. ChelkowskiET Meeting, Hannover 01/2009Slide 11 Location Strasbourg: Arm length of 10km Simulation parameters No longer on dark fringe! 33% of laser power lost in “dark” port 10km A = B - C B C Change arm length to 10068m to achieve dark port condition again! Include Matlab figure which Shows the fringes?
12
Noise coupling analysis S. ChelkowskiET Meeting, Hannover 01/2009Slide 12 Our aim is @ 10Hz Hild et al., (2008) arXiv:0810.0604v2
13
How does strain sensitivity translates into Sagnac phase shift? S. ChelkowskiET Meeting, Hannover 01/2009Slide 13 10km Clockwise propagating beam: Counter-clockwise propagating beam
14
10km Noise couplings – Frequency noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 14 Non-zero area Sagnac
15
Noise couplings – Frequency noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 15 A = B - C B C Near-zero area Sagnac
16
Noise couplings – Seismic noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 16 10km Non-zero area Sagnac
17
Noise couplings – Seismic noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 17 A = B - C B C Near-zero area Sagnac
18
Noise couplings – Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 18
19
Noise couplings – Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 19 10km Non-zero area Sagnac
20
Noise couplings – Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 20
21
Noise couplings – Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 21 A = B - C B C Near-zero area Sagnac
22
Conclusion Two possible solutions for ET with Sagnac topology Non-zero area Sagnac Near Zero area Sagnac Noise coupling analysis performed for both cases Near-zero area Sagnac performs better! Seismic noise and frequency noise coupling are fine Only beam alignment has stringent requirement S. ChelkowskiET Meeting, Hannover 01/2009Slide 22
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.