Presentation is loading. Please wait.

Presentation is loading. Please wait.

Originate from the movement of electrical charges Do not require a medium to move.

Similar presentations


Presentation on theme: "Originate from the movement of electrical charges Do not require a medium to move."— Presentation transcript:

1

2 Originate from the movement of electrical charges Do not require a medium to move

3 ________________- the distance of one wave cycle Often taken from one crest to the next but only has to be two identical points Symbol is Length units __________________- # of wave cycle that pass a given point in a given unit of time Symbol is Units: cycles/sec, sometimes written as 1/s, also equals 1 Hertz (Hz) _____________________ Distance between the zero amplitude line and the top of the crest Waves with higher amplitudes carry more energy

4 _________________ is the wavelength in meters is the frequency in s -1 (or Hz) c is the speed of the wave For electromagnetic radiation, use the speed of light 2.99792458 x 10 8 m/s (round this to 3.00 x 10 8 m/s) There is an _____________ relationship between wavelength and frequency

5 Light can be passed through a prism and makes a rainbow. This is a ________________ spectrum.

6 Proposed that electromagnetic energy comes in discreet amounts (or _____________________) The energy of a quantum is expressed by ____________where h= 6.626 x 10 -34 J s Energy can only increase by multiples: 1 h, 2 h, 3 h, and so on

7 Applied the idea of quanta to explain how light can cause electricity: Tiny packets of light (photons) hit an atom. If they have enough energy, they can kick an electron out of an atom (photoelectric effect) So light is a wave and a “packet”

8 Remember: Bohr revised Rutherford’s model, putting the electrons in orbitals like planets around the sun Excited electrons could jump orbital levels When electrons returned to their original level (ground state), they emit energy Creates a ________ spectrum

9 Created when only a few wavelengths of the electromagnetic spectrum are seen Gases of each element will make them when electricity passes through them or they’re heated up. The lines can be seen when the light is passed through a prism. Lines are different for each element (_____________________________)

10 Mercury Calcium Sodium Helium Hydrogen BRIGHT LINE SPECTRA 7500 7000 6500 6000 5500 5000 4500 4000 A

11 Electron behave like ____________ (matter) and ____________ (electromagnetic radiation) If this is true, electrons can’t be tied to a fixed orbit We can’t even be certain of both an electron’s momentum and position at any one point in time (Heisenberg uncertainty principle) Can only create shaded areas around the nucleus where there is a high _________________ of finding electrons

12 System of numbers that gives each electron a unique address in any atom

13 Also called ______ Represents the primary energy levels around the nucleus (kind of like Bohr’s rings) There are 7 energy levels so _____________ Electrons with a higher n are in higher energy orbital and spend more time away from the nucleus Electrons with the same n are in the same principle shell

14 Also called l or ___________ Determines the shape of the orbital ____ sublevel _____ sublevel

15 Spherical in shape

16 Look like a dumbbell in each axis (x, y, and z)

17

18

19 Also called m l or the orbital If s subshell……_____ orbital p subshell……_____ orbitals d subshell……_____ orbitals f subshell…..______ orbitals

20 Two electrons can fill each orbital Another quantum number is needed so every electron has its own number Electron Spin Quantum Number Also called m s Electron can spin _________________________________ An orbital with two electrons has one of each Also represent them with ___________

21 Silver has 47 electrons (odd number). On average, 23 electrons will have one spin, 24 will have the opposite spin. The magnet splits the beam. These silver atoms each have 24 +½-spin electrons and 23 –½-spin electrons. These silver atoms each have 23 +½-spin electrons and 24 –½-spin electrons.

22

23 Description of the placement of all the electrons in an atom of an element Rules Electrons occupy the lowest energy orbitals available (ground state). Filling order is determined by Aufbau Principle. Orbitals can only hold 2 electrons and they must have opposing spins (Pauli exclusion principle) Electrons will fill empty orbitals when possible. Half-filled orbitals all have parallel spin. (Hund’s rule)

24

25 Remember this is the real location of the f block

26

27 Regular Energy level is written as a number Subshell letter is written next Number of electrons in subshell is given as an exponent Extended Same as regular, but subshells are divided into the individual orbitals

28 Regular He _________ O ______________ Cl ________________________ Extended He __________ O _____________________ Cl _______________________________

29 Same as spdf configuration but it starts from the noble gas of the previous period Examples Be _______________ K _______________ Br ________________

30 Same as spdf configuartions except Number of electron in subshell is not written Each orbital within subshell is given a line ↑ and ↓ arrows are drawn on the lines to represent the electrons (fourth quantum number) Make sure to follow Hund’s rule Examples: N _________________________ O __________________________

31 Electrons in the __________________of an atom Electrons in lower energy levels are called ______ electrons Can be predicted by the periodic table for representative elements

32 Helium only has 2. D and f-block elements have 2, but can vary

33 Dots are placed around the element symbol to represent to valence electrons

34 To be stable, atoms want __________ in their outer shell Noble gases already have 8 and don’t usually react with anyone Others will lose or gain electrons to get to 8 Said to be isoelectronic with the Nobel gas from the last period Ion will have the same electron configuration as this noble gas Atoms that gain or lose electrons to become isoelectronic with Helium follow the duet rule (2 electrons in valence shell)

35  Group 1- 1 valence electron  Lose 1 electron, become +1 cation  Group 2- 2 valence electrons  Lose 2 electrons, become +2 cation  Group 13- 3 valence electrons  Lose 3 electrons, become +3 cation  Group 15- 5 valence electrons  Gain 3 electrons, become -3 anion  Group 16- 6 valence electrons  Gain 2 electrons, become -2 anion  Group 17- 7 valence electrons  Gain 1 electron, become -1 anion

36 Transition metals form cations, but the charge cannot be predicted Group 14 does not commonly form ions Group 18 does not form ions

37 The metal properties of the elements increase as you move to the left and move down on the periodic table

38 MetalsNonmetals Conduct electricity wellDon’t conduct electricity well MalleableBrittle DuctileNot ductile Tend to lose electronsTend to gain electrons Low electronegativityHigh electronegativity Slightly negative electron affinityVery negative electron affinity Found in basesFound in acids ShinyDull

39 Ionization energy is the amount of energy needed to remove an electron Need more energy as you move up and to the right of the periodic table

40 Electronegativity is the ability of an atom to attract electrons Increases as you move up and to the right of the periodic table (noble gases sit out)

41 Atomic size increases as you move down and to the left of the periodic table

42


Download ppt "Originate from the movement of electrical charges Do not require a medium to move."

Similar presentations


Ads by Google