Presentation is loading. Please wait.

Presentation is loading. Please wait.

Forecasting February 26, 2007. Laws of Forecasting Three Laws of Forecasting –Forecasts are always wrong! –Detailed forecasts are worse than aggregate.

Similar presentations


Presentation on theme: "Forecasting February 26, 2007. Laws of Forecasting Three Laws of Forecasting –Forecasts are always wrong! –Detailed forecasts are worse than aggregate."— Presentation transcript:

1 Forecasting February 26, 2007

2 Laws of Forecasting Three Laws of Forecasting –Forecasts are always wrong! –Detailed forecasts are worse than aggregate forecasts! –The further into the future, the less reliable the forecast will be!

3 Forecasting Starting point of all Production Planning systems Qualitative Forecasting techniques Quantitative Forecasting techniques Choice of technique varies with the Product Life Cycle

4 Product Development Stage Should we enter into this business? What segments? What are the alternative growth opportunities for product X? How have established products similar to X fared? How should we allocate R&D efforts and funds? Where will be the market 5 years, 10 years from now?

5 Preliminaries What is the purpose of forecast? How is it to be used? –Accuracy and power required by the techniques Requirements for entering a business vs. next year’s budget –Impact of promotions and other marketing devices –Techniques vary with cost, scope and accuracy –Forecaster should fix the level of tolerance of accuracy Helps in managing the trade-offs Accurate forecast reduces inventory (cost of inventory vs. cost of forecasting)

6 Qualitative Forecasting Relies on expertise of people Data is scarce Usually used for technological forecasts (long term forecasts) Delphi Method, Market Research, Panel Consensus

7 Quantitative Forecasting Time Series models –Predict a future parameter as a function of past values of that parameter (e.g., historical demand) –Systematic variation is captured (seasonality, trend) –Cyclic patterns –Growth (decline) rates of the trends –Assume future is like past (hence useful for short term forecasts) –Managers need to look at the turning points in future that change the past trends

8 Time Series Forecasting Time period i = 1,2,…..t (most recent data) A(i): Actual observations f(t+λ):Forecasts for t + λ, λ = 1,2,……, F(t):smoothed estimate (current position of the process under consideration) T(t):smoothed trend Time Series Modelf(t+λ), λ =1,2,3,…,A(i), i =1,2,…t

9 Time Series Forecasting Moving-Average Model Exponential Smoothing Model Exponential Smoothing with a Linear Trend Model Winter’s Method (adds seasonal multipliers to the exponential smoothing with linear trend model)

10 Quantitative Forecasting Causal models –Most sophisticated –Predict a future parameter (e.g., demand for a product) as a function of other parameters (e.g., interest rates, marketing strategy).

11 Causal Forecasting Opening a fast food restaurant –Demand forecast? –Predictable parameters Population in the vicinity Competition –Use statistics (e.g., regression) to estimate the parameters Y = b 0 + b 1 x 1 + b 2 X 2

12 Components of an Observation Observed demand (O) = Systematic component (S) + Random component (R) Level (current deseasonalized demand) Trend (growth or decline in demand) Seasonality (predictable seasonal fluctuation) Systematic component: Expected value of demand Random component: The part of the forecast that deviates from the systematic component Forecast error: difference between forecast and actual demand

13 Time Series Forecasting Forecast demand for the next four quarters.

14 Time Series Forecasting

15 Basic Approach to Demand Forecasting Understand the objectives of forecasting Integrate demand planning and forecasting Identify major factors that influence the demand forecast Understand and identify customer segments Determine the appropriate forecasting technique Establish performance and error measures for the forecast

16 Patterns of Demand Quantity Time (a) Horizontal: Data cluster about a horizontal line.

17 Patterns of Demand Quantity Time (b) Trend: Data consistently increase or decrease.

18 Patterns of Demand Quantity |||||||||||| JFMAMJJASOND Months (c) Seasonal: Data consistently show peaks and valleys. Year 1 Year 2

19 Patterns of Demand Quantity |||||| 123456 Years (c) Cyclical: Data reveal gradual increases and decreases over extended periods.

20 Demand Forecast Applications DEMAND FORECAST APPLICATIONS Time Horizon Medium TermLong Term Short Term (3 months–(more than Application(0–3 months) 2 years) 2 years) Total sales Groups or families of products or services Staff planning Production planning Master production scheduling Purchasing Distribution Causal Judgment Forecast quantityIndividual products or services Decision areaInventory management Final assembly scheduling Workforce scheduling Master production scheduling ForecastingTime series techniqueCausal Judgment Total sales Facility location Capacity planning Process management Causal Judgment

21 Causal Methods Linear Regression Dependent variable Independent variable XY Estimate of Y from regressionequation Regressionequation: Y = a + bX Actualvalue of Y Value of X used to estimate Y Deviation, or error {

22 Causal Methods Linear Regression SalesAdvertising Month(000 units)(000 $) 12642.5 21161.3 31651.4 41011.0 52092.0 a = – 8.136 b = 109.229 X r = 0.98 r 2 = 0.96

23 Causal Methods Linear Regression SalesAdvertising Month(000 units)(000 $) 12642.5 21161.3 31651.4 41011.0 52092.0 a = – 8.136 b = 109.229 X r = 0.98 r 2 = 0.96 s yx = 15.61 |||| 1.01.52.02.5 Advertising (thousands of dollars) 300 — 250 — 200 — 150 — 100 — 50 Sales (thousands of units)

24 Causal Methods Linear Regression SalesAdvertising Month(000 units)(000 $) 12642.5 21161.3 31651.4 41011.0 52092.0 a = – 8.136 b = 109.229 X r = 0.98 r 2 = 0.96 s yx = 15.61 |||| 1.01.52.02.5 Advertising (thousands of dollars) 300 — 250 — 200 — 150 — 100 — 50 Y = – 8.136 + 109.229 X Sales (thousands of units)

25 Causal Methods Linear Regression SalesAdvertising Month(000 units)(000 $) 12642.5 21161.3 31651.4 41011.0 52092.0 a = – 8.136 b = 109.229 X r = 0.98 r 2 = 0.96 s yx = 15.61 |||| 1.01.52.02.5 Advertising (thousands of dollars) 300 — 250 — 200 — 150 — 100 — 50 Y = – 8.136 + 109.229 X Sales (thousands of units)

26 Causal Methods Linear Regression SalesAdvertising Month(000 units)(000 $) 12642.5 21161.3 31651.4 41011.0 52092.0 a = – 8.136 b = 109.229 X r = 0.98 r 2 = 0.96 s yx = 15.61 |||| 1.01.52.02.5 Advertising (thousands of dollars) 300 — 250 — 200 — 150 — 100 — 50 Y = – 8.136 + 109.229 X Sales (thousands of units) Forecast for Month 6 X = $1750, Y = – 8.136 + 109.229(1.75)

27 Causal Methods Linear Regression SalesAdvertising Month(000 units)(000 $) 12642.5 21161.3 31651.4 41011.0 52092.0 a = – 8.136 b = 109.229 X r = 0.98 r 2 = 0.96 s yx = 15.61 |||| 1.01.52.02.5 Advertising (thousands of dollars) 300 — 250 — 200 — 150 — 100 — 50 Y = – 8.136 + 109.229 X Sales (thousands of units) Forecast for Month 6 X = $1750, Y = 183.015, or 183,015 units

28 Causal Methods Linear Regression SalesAdvertising Month(000 units)(000 $) 12642.5 21161.3 31651.4 41011.0 52092.0 a = – 8.136 b = 109.229 X r = 0.98 r 2 = 0.96 s yx = 15.61 |||| 1.01.52.02.5 Advertising (thousands of dollars) 300 — 250 — 200 — 150 — 100 — 50 Y = – 8.136 + 109.229 X Sales (thousands of units)

29 Causal Methods Linear Regression SalesAdvertising Month(000 units)(000 $) 12642.5 21161.3 31651.4 41011.0 52092.0 a = – 8.136 b = 109.229 X r = 0.98 r 2 = 0.96 s yx = 15.61 |||| 1.01.52.02.5 Advertising (thousands of dollars) 300 — 250 — 200 — 150 — 100 — 50 Y = – 8.136 + 109.229 X Sales (thousands of units) If current stock = 62,500 units, Production = 183,015 – 62,500 = 120,015 units

30 Time-Series Methods Simple Moving Averages Week 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — |||||| 051015202530 Patient arrivals Actual patient arrivals

31 Time-Series Methods Simple Moving Averages Actual patient arrivals 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — Week |||||| 051015202530 Patient arrivals

32 Time-Series Methods Simple Moving Averages Actual patient arrivals arrivals 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — Week |||||| 051015202530 Patient WeekArrivals 1400 2380 3411 Patient arrivals

33 Time-Series Methods Simple Moving Averages Actual patient arrivals arrivals 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — Week |||||| 051015202530 Patient WeekArrivals 1400 2380 3411 Patient arrivals

34 Time-Series Methods Simple Moving Averages Actual patient arrivals Week 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — |||||| 051015202530 Patient WeekArrivals 1400 2380 3411 F4 =F4 =F4 =F4 = 411 + 380 + 400 3 Patient arrivals

35 Time-Series Methods Simple Moving Averages Actual patient arrivals 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — Week |||||| 051015202530 Patient WeekArrivals 1400 2380 3411 F 4 = 397.0 Patient arrivals

36 Time-Series Methods Simple Moving Averages Actual patient arrivals 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — Week |||||| 051015202530 Patient WeekArrivals 1400 2380 3411 F 4 = 397.0 Patient arrivals

37 Time-Series Methods Simple Moving Averages Actual patient arrivals Week 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — |||||| 051015202530 Patient WeekArrivals 2380 3411 4415 F5 =F5 =F5 =F5 = 415 + 411 + 380 3 Patient arrivals

38 Time-Series Methods Simple Moving Averages Actual patient arrivals 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — Week |||||| 051015202530 Patient WeekArrivals 2380 3411 4415 F 5 = 402.0 Patient arrivals

39 Time-Series Methods Simple Moving Averages Week 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — |||||| 051015202530 Patient arrivals Actual patient arrivals 3-week MA forecast 6-week MA forecast

40 Time-Series Methods Exponential Smoothing 450 450 — 430 430 — 410 410 — 390 390 — 370 370 —Week |||||| 051015202530 Exponential Smoothing  = 0.10 F t +1 = F t +  (D t – F t ) Patient arrivals

41 Time-Series Methods Exponential Smoothing 450 450 — 430 430 — 410 410 — 390 390 — 370 370 —Week |||||| 051015202530 Exponential Smoothing  = 0.10 F 4 = 0.10(411) + 0.90(390) F 3 = (400 + 380)/2 F 3 = (400 + 380)/2 D 3 = 411 F t +1 = F t +  (D t – F t ) Patient arrivals

42 Time-Series Methods Exponential Smoothing 450 450 — 430 430 — 410 410 — 390 390 — 370 370 —Week |||||| 051015202530 F 4 = 392.1 Exponential Smoothing  = 0.10 F 3 = (400 + 380)/2 F 3 = (400 + 380)/2 D 3 = 411 F t +1 = F t +  (D t – F t ) Patient arrivals

43 Time-Series Methods Exponential Smoothing Week 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — |||||| 051015202530 F 4 = 392.1 F 4 = 392.1 D 4 = 415 Exponential Smoothing  = 0.10 F 4 = 392.1 F 5 = 394.4 F t +1 = F t +  (D t – F t ) Patient arrivals

44 Time-Series Methods Exponential Smoothing Week 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — |||||| 051015202530 Patient arrivals

45 Time-Series Methods Exponential Smoothing 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — Patient arrivals Week |||||| 051015202530 Exponential smoothing  = 0.10

46 Time-Series Methods Exponential Smoothing 450 450 — 430 430 — 410 410 — 390 390 — 370 370 — Patient arrivals Week |||||| 051015202530 3-week MA forecast 6-week MA forecast Exponential smoothing  = 0.10

47 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week Actual blood test requests

48 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week Medanalysis, Inc. Demand for blood analysis A t =  D t + (1 –  )(A t-1 + T t-1 ) T t =  (A t – A t-1 ) + (1 –  )T t-1

49 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week A 1 = 0.2(27) + 0.80(28 + 3) T 1 = 0.2(30.2 - 28) + 0.80(3) Medanalysis, Inc. Demand for blood analysis A 0 = 28 patients T 0 = 3 patients  = 0.20  = 0.20 A t =  D t + (1 –  )(A t-1 + T t-1 ) T t =  (A t – A t-1 ) + (1 –  )T t-1

50 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week A 1 = 30.2 T 1 = 2.8 Medanalysis, Inc. Demand for blood analysis A 0 = 28 patients T 0 = 3 patients  = 0.20  = 0.20 A t =  D t + (1 –  )(A t-1 + T t-1 ) T t =  (A t – A t-1 ) + (1 –  )T t-1 Forecast 2 = 30.2 + 2.8 = 33

51 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week Medanalysis, Inc. Demand for blood analysis A 2 = 30.2 D 2 = 44 T 1 = 2.8  = 0.20  = 0.20 A t =  D t + (1 –  )(A t-1 + T t-1 ) T t =  (A t – A t-1 ) + (1 –  )T t-1 A 2 = 0.2(44) + 0.80(30.2 + 2.8) T 2 = 0.2(35.2 - 30.2) + 0.80(2.8)

52 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week Medanalysis, Inc. Demand for blood analysis A 2 = 30.2 D 2 = 44 T 1 = 2.8  = 0.20  = 0.20 A t =  D t + (1 –  )(A t-1 + T t-1 ) T t =  (A t – A t-1 ) + (1 –  )T t-1 A 2 = 35.2 T 2 = 3.2 Forecast = 35.2 + 3.2 = 38.4

53 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week Actual blood test requests Trend-adjusted forecast

54 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week Trend-adjusted forecast Actual blood test requests Number of time periods15.00 Demand smoothing coefficient (  )0.20 Initial demand value28.00 Trend-smoothing coefficient (  )0.20 Estimate of trend3.00

55 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 80 — 70 70 — 60 60 — 50 50 — 40 40 — 30 30 — Patient arrivals Week Trend-adjusted forecast Actual blood test requests 02828.003.000.000.00 12730.202.8431.00–4.00 24435.233.2733.0410.96 33738.203.2138.51–1.51 43540.142.9641.42–6.42 55345.083.3543.109.89 63846.352.9348.43–10.43 75750.833.2449.297.71 86155.463.5254.086.92 93954.992.7258.98–19.98 105557.172.6157.71–2.71 115458.632.3859.78–5.78 125259.212.0261.01–9.01 136060.991.9761.23–1.23 146062.371.8562.96–2.96 157566.382.2864.2210.77 TABLE 13.2FORECASTS FOR MEDANALYSIS SmoothedTrendForecast WeekArrivalsAverageAverageForecastError

56 Time-Series Methods Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 — 70 — 60 — 50 — 40 — 30 — Patient arrivals Week Trend-adjusted forecast Actual blood test requests SmoothedTrendForecast WeekArrivalsAverageAverageForecastError 02828.003.000.000.00 12730.202.8431.00–4.00 24435.233.2733.0410.96 33738.203.2138.51–1.51 43540.142.9641.42–6.42 55345.083.3543.109.89 63846.352.9348.43–10.43 75750.833.2449.297.71 86155.463.5254.086.92 93954.992.7258.98–19.98 105557.172.6157.71–2.71 115458.632.3859.78–5.78 125259.212.0261.01–9.01 136060.991.9761.23–1.23 146062.371.8562.96–2.96 157566.382.2864.2210.77 SUMMARY Average demand49.80 Mean square error76.13 Mean absolute deviation7.35 Forecast for week 1668.66 Forecast for week 1770.95 Forecast for week 1873.24

57 QuarterYear 1Year 2Year 3Year 4 14570100100 2335370585725 35205908301160 4100170285215 Total1000120018002200 Total1000120018002200 Time-Series Methods Seasonal Influences

58

59

60 Seasonal Patterns Period Demand |||||||||||||||| 0245810121416 (a) Multiplicative pattern

61 Seasonal Patterns Period |||||||||||||||| 0245810121416 Demand (b) Additive pattern

62 Choosing a Method Forecast Error Measures of Forecast Error E t = D t – F t  |E t | n Et2Et2nnEt2Et2nnn CFE =  E t  = MSE = MAD = MAPE =  [ |E t | (100) ] / D t n  (E t – E ) 2 n – 1

63 Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225-25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% Choosing a Method Forecast Error

64 Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225–25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% Measures of Error

65 Choosing a Method Forecast Error Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225–25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% CFE = – 15 Measures of Error

66 Choosing a Method Forecast Error Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225–25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% CFE = – 15 Measures of Error E = = – 1.875 – 15 8

67 Choosing a Method Forecast Error Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225–25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% MSE = = 659.4 5275 8 CFE = – 15 Measures of Error E = = – 1.875 – 15 8

68 Choosing a Method Forecast Error Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225–25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% MSE = = 659.4 5275 8 CFE = – 15 Measures of Error E = = – 1.875 – 15 8  = 27.4

69 Choosing a Method Forecast Error Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225–25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% MSE = = 659.4 5275 8 CFE = – 15 Measures of Error MAD = = 24.4 195 8 E = = – 1.875 – 15 8  = 27.4

70 Choosing a Method Forecast Error Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225–25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% MSE = = 659.4 5275 8 CFE = – 15 Measures of Error MAD = = 24.4 195 8 MAPE = = 10.2% 81.3% 8 E = = – 1.875 – 15 8  = 27.4

71 Choosing a Method Forecast Error Absolute Error AbsolutePercent Month,Demand,Forecast,Error,Squared,Error,Error, tD t F t E t E t 2 |E t |(|E t |/D t )(100) 1200225–25 625 2512.5% 224022020 400 208.3 330028515 225 155.0 4270290–20 400 207.4 5230250–20 400 208.7 626024020 400 207.7 7210250–40 1600 4019.0 827524035 1225 3512.7 Total–15 5275 19581.3% MSE = = 659.4 5275 8 CFE = – 15 Measures of Error MAD = = 24.4 195 8 MAPE = = 10.2% 81.3% 8 E = = – 1.875 – 15 8  = 27.4

72 Summary of Learning Objectives What are the roles of forecasting for an enterprise and a supply chain? What are the components of a demand forecast? How is demand forecast given historical data using time series methodologies? How is a demand forecast analyzed to estimate forecast error?


Download ppt "Forecasting February 26, 2007. Laws of Forecasting Three Laws of Forecasting –Forecasts are always wrong! –Detailed forecasts are worse than aggregate."

Similar presentations


Ads by Google