Download presentation
Presentation is loading. Please wait.
Published bySimon Walton Modified over 9 years ago
1
Random walks in complex networks 第六届全国网络科学论坛与第二届全国混沌应用研讨会 章 忠 志 复旦大学计算科学技术学院 Email: zhangzz@fudan.edu.cnzhangzz@fudan.edu.cn Homepage: http://homepage.fudan.edu.cn/~zhangzz/ http://homepage.fudan.edu.cn/~zhangzz/ 2010 年 7 月 26-31 日
2
复旦大学 2/43 2010-06-03 Brief introduction to our groupWhat is a random walkImportant parameter of random walksApplications of random walksOur work on Random walks: trapping in complex networks Contents
3
复旦大学 3/43 2010-06-03 Brief introduction to our group Research directions: structure and dynamics in networks Modeling networks and Structural analysis Spectrum analysis and its application Enumeration problems: spanning trees, perfect matching, Hamilton paths Dynamics: Random walks, percolation
4
复旦大学 4/43 2010-06-03 - Random Walks on Graphs
5
复旦大学 5/43 2010-06-03 Random Walks on Graphs At any node, go to one of the neighbors of the node with equal probability. -
6
复旦大学 6/43 2010-06-03 Random Walks on Graphs At any node, go to one of the neighbors of the node with equal probability. -
7
复旦大学 7/43 2010-06-03 Random Walks on Graphs At any node, go to one of the neighbors of the node with equal probability. -
8
复旦大学 8/43 2010-06-03 Random Walks on Graphs At any node, go to one of the neighbors of the node with equal probability. -
9
复旦大学 9/43 2010-06-03 Random Walks on Graphs At any node, go to one of the neighbors of the node with equal probability. -
10
复旦大学 10/43 2010-06-03 Important parameters of random walks 重要指标 Mean Commute time C(s,t): Steps from i to j, and then go back C(t,s) = F(s,t) + F(t,s) Mean Return time T(s,s): mean time for returning to node s for the first time after having left it First-Passage Time F(s,t): Expected number of steps to reach t starting at s Cover time, survival problity, …… New J. Phys. 7, 26 (2005)
11
复旦大学 11/43 2010-06-03 Applications of random walks PageRank algorithm Community detection Recommendation systems Electrical circuits (resistances) Information Retrieval Natural Language Processing Machine Learning Graph partitioning In economics: random walk hypothesis
12
复旦大学 12/43 2010-06-03 Application to Community detection World Wide Web Citation networks Social networks Biological networks Food Webs Properties of community may be quite different from the average property of network. More links “inside” than “outside”
13
复旦大学 13/43 2010-06-03 Application to recommendation systems IEEE Trans. Knowl. Data Eng. 19, 355 (2007)
14
复旦大学 14/43 2010-06-03 Connections with electrical networks Every edge – a resistor of 1 ohm. Voltage difference of 1 volt between u and v. R(u,v) – inverse of electrical current from u to v. _ u v + C(u,v) = F(s,t) + F(t,s) =2mR(u,v), dz is degree of z, m is the number of edges
15
复旦大学 15/43 2010-06-03 Formulas for effective resistance
16
复旦大学 16/43 2010-06-03 Random walks and other topologies Communtity structure Spanning trees Average distance EPL (Europhysics Letters), 2010, 90:68002
17
复旦大学 17/43 2010-06-03 Our work: Random walks on complex networks with an immobile trap Consider again a random walk process in a network. In a communication or a social network, a message can disappear; for example, due to failure. How long will the message survive before being trapped?
18
复旦大学 18/43 2010-06-03 Our work Random walks on scale-free networks A pseudofractal scale-free web Apollonian networks Modular scale-free networks Koch networks A fractal scale-free network Scale-free networks with the same degree sequences Random walks on exponential networks Random walks on fractals
19
复旦大学 19/43 2010-06-03 Main contributions Methods for finding Mean first-passage time (MFPT) Backward equations Generating functions Laplacian spectra Electrical networks Uncover the impacts of structures on MFPT Scale-free behavior Tree-like structure Modular structure Fractal structure
20
复旦大学 20/43 2010-06-03 Walks on pseudofractal scale-free web Physical Review E, 2009, 79: 021127. 主要贡献 : (1) 新的解析方法 (2) 新发现
21
复旦大学 21/43 2010-06-03 Walks on Apollonian network EPL, 2009, 86: 10006. 为发表时所报导的传输效率最高的网络
22
复旦大学 22/43 2010-06-03 Walks on modular scale-free networks Physical Review E, 2009, 80: 051120. 生成函数方法
23
复旦大学 23/43 2010-06-03 Walks on Koch networks Physical Review E, 2009, 79: 061113. Construction
24
复旦大学 24/43 2010-06-03 Physical Review E, 2009, 79: 061113. Walks on Koch networks
25
复旦大学 25/43 2010-06-03 Walks in extended Koch netoworks
26
复旦大学 26/43 2010-06-03 Walks on a fractal scale-free network EPL (Europhysics Letters), 2009, 88: 10001.
27
复旦大学 27/43 2010-06-03 Walks on scale-free networks with identical degree sequences Physical Review E, 2009, 79: 031110.
28
复旦大学 28/43 2010-06-03 Walks on scale-free networks with identical degree sequences Physical Review E, 2009, 80: 061111 模型优点: (1) 不需要交叉边; (2) 网络始终连通.
29
复旦大学 29/43 2010-06-03 Walks on exponential networks Conclusion: MFPT depends on the location of trap. Physical Review E, 2010, 81: 016114.
30
复旦大学 30/43 2010-06-03 Impact of trap position on MFPT in scale-free networks Journal of Mathematical Physics, 2009, 50: 033514.
31
复旦大学 31/43 2010-06-03 No qualitative effect of trap location on MFPT in the T-graph E. Agliari, Physical Review E, 2008, 77: 011128. Zhang ZZ, et. al., New Journal of Physics, 2009, 11: 103043.
32
复旦大学 32/43 2010-06-03 Random Walks on Vicsek fractals Physical Review E, 2010, 81:031118.
33
复旦大学 33/43 2010-06-03 Future work Walks with multiple traps 1 Quantum walks on networks 2 Biased walks, e.g. walks on weighted nets 3 Self-avoid walks 4
34
Thank You!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.