Presentation is loading. Please wait.

Presentation is loading. Please wait.

Centers for Disease Control and Prevention Morgantown, West Virginia June 20-24, 2011 Teach Epidemiology Professional Development Workshop Day 3.

Similar presentations


Presentation on theme: "Centers for Disease Control and Prevention Morgantown, West Virginia June 20-24, 2011 Teach Epidemiology Professional Development Workshop Day 3."— Presentation transcript:

1 Centers for Disease Control and Prevention Morgantown, West Virginia June 20-24, 2011 Teach Epidemiology Professional Development Workshop Day 3

2 2

3 3 Teach Epidemiology

4 http://www.cdc.gov/ MMWR

5

6 6 National Research Council, Learning and Understanding Teach Epidemiology Enduring Epidemiological Understandings Knowledge that “… is connected and organized, and … ‘conditionalized’ to specify the context in which it is applicable.”

7

8

9

10

11

12

13 “… 23% did not complete the choking game question.”

14 What would you ask the author?

15

16 16 Time Check 8:15 AM

17 17

18 18 Teach Epidemiology

19 19

20 20 Ms. Wilson After-School, Make-Up Homework Hall

21 21 Talking too much on a cell phone causes students not to do their homework. a c b d Label the 2x2 Table

22 22 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework.

23 23 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. Place the data into the 2x2 Table

24 24 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. 15 5 20

25 25 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. 15 5 20 Which of the following statements can be made based on the above data: A: 15 of 20 students, who did not do their homework, had cell phones. B: 15 of 20 students, who had cell phones, did not do their homework.

26 26 Breast Implants No Breast Implants No Connective Tissue Disease 31,1801,183 51385,80586,318 Cohort Study – The Nurses’ Health Study (1976) Which of the following statements can be made based on the above data: A: 15 of 20 students, who did not do their homework, had cell phones. B: 15 of 20 students, who had cell phones, did not do their homework. Total Connective Tissue Disease Risk

27 27 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. 15 5 20 Which of the following statements can be made based on the above data: A: 15 of 20 students, who did not do their homework, had cell phones. B: 15 of 20 students, who had cell phones, did not do their homework. RiskX Odds

28 28 Odds A ratio of the probability of occurrence of an event to that of its nonoccurrence. Talking too much on a cell phone causes students not to do their homework.

29 29 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total 15 5 Which of the following statements can be made based on the above data: A: 15 of 20 students, who did not do their homework, had cell phones. B: 15 of 20 students, who had cell phones, did not do their homework. A ratio of the probability of occurrence of an event to that of its nonoccurrence. 15 to 5 or 3 to 1 Odds Talking too much on a cell phone causes students not to do their homework. 20

30 30 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total 15 5 Which of the following statements can be made based on the above data: A: 15 of 20 students, who did not do their homework, had cell phones. B: 15 of 20 students, who had cell phones, did not do their homework. Talking too much on a cell phone causes students not to do their homework. 20 Nothing A ratio of the probability of occurrence of an event to that of its nonoccurrence. 15 to 5 or 3 to 1 Odds Compared to what?

31 31 CompareDivideCount Talking too much on a cell phone causes students not to do their homework.

32 32 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total 15 5 Which of the following statements can be made based on the above data: A: 15 of 20 students, who did not do their homework, had cell phones. B: 15 of 20 students, who had cell phones, did not do their homework. Talking too much on a cell phone causes students not to do their homework. 20 Nothing A ratio of the probability of occurrence of an event to that of its nonoccurrence. 15 to 5 or 3 to 1 Odds Compared to what? What did Ms. Wilson do?

33 33 Talking too much on a cell phone causes students not to do their homework. What did Ms. Wilson do?

34 34 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. 15 5 20 10 30 40 3 to 1 10 to 30 or 1 to 3 Place the data into the 2x2 Table

35 35 What mathematical computation would allow them to complete the statement: The odds of having a cell phone were ____ times greater among students who had not done their homework compared to students who did do their homework. a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. 15 5 20 10 30 40 3 to 1 10 to 30 or 1 to 3

36 What mathematical computation would allow them to complete the statement: The odds of having a cell phone were ____ times greater among students who had not done their homework compared to students who did do their homework. 36 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. 15 5 20 10 30 40 3 to 1 3 / 1 = 3 1 / 3 =.33 3 /.33 = 9 9 10 to 30 or 1 to 3

37 37 Odds Ratio Ratio of odds in favor of exposure among cases to the odds in favor of exposure among controls. Talking too much on a cell phone causes students not to do their homework. Relative Odds

38 38 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. 15 5 20 35 5 40 Odds Ratio What mathematical computation would allow them to complete the statement: The odds of having a cell phone were ____ times greater among students who had not done their homework compared to students who did do their homework..43

39 39 a c b d Did Not Have Cell Phone Did Not Do Homework Did Homework Had Cell Phone Total Talking too much on a cell phone causes students not to do their homework. 15 5 20 30 10 40 Odds Ratio What mathematical computation would allow them to complete the statement: The odds of having a cell phone were ____ times greater among students who had not done their homework compared to students who did do their homework. 1

40 40

41 The Journey Detectives in the Classroom - Investigation 2-6: The Journey

42 Analogy Detectives in the Classroom - Investigation 2-6: The Journey

43 Epi Talk Study Design Epi Talk Procedures and methods, established beforehand, that are followed by the investigator conducting the study. Detectives in the Classroom - Investigation 2-6: The Journey

44 Timing When are the passengers identified as exposed or unexposed? E When are the passengers identified as sick or not sick? DZ Timing When does the epidemiologist start to observe the journey? - Detectives in the Classroom - Investigation 2-6: The Journey

45 Time +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ E DZ Label the Train Tracks - Detectives in the Classroom - Investigation 2-6: The Journey

46 Time +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Study Design: E DZ Label the Train Tracks - Controlled Trial Detectives in the Classroom - Investigation 2-6: The Journey

47 Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Healthy People Controlled Trial Flow Diagram - Healthy People E Random Assignment E DZ Detectives in the Classroom - Investigation 2-6: The Journey

48 Time +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Study Design: Label the Train Tracks Cohort Study Detectives in the Classroom - Investigation 2-6: The Journey

49 Cohort Study Just as in the controlled trial, the epidemiologist is also on the train during the entire journey. But there is an important difference. The epidemiologist is not telling passengers what to do. Rather, the epidemiologist is just observing them and counting. Passengers are not being told to have or not have an exposure, they are just living their normal lives. The epidemiologist, on the ride for the whole journey, just keeps observing everyone’s exposures and whether or not they develop the disease during the journey. Label the Train Tracks Detectives in the Classroom - Investigation 2-6: The Journey

50 Time +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ E DZ Label the Train Tracks - Study Design: Cohort Study Detectives in the Classroom - Investigation 2-6: The Journey

51 Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Healthy People Cohort Study Flow Diagram - Healthy People E E DZ Detectives in the Classroom - Investigation 2-6: The Journey

52 Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Healthy People Cohort Study Flow Diagram - Healthy People E E DZ Controlled Trial Detectives in the Classroom - Investigation 2-6: The Journey

53 Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Healthy People Cohort Study Flow Diagram - Healthy People E E DZ Controlled Trial Random Assignment Detectives in the Classroom - Investigation 2-6: The Journey

54 Review Observational Studies Epi Talk Epidemiologic studies of natural experiments in which the investigator is not involved in the intervention other than to record, classify, count, and statistically analyze results. Detectives in the Classroom - Investigation 2-6: The Journey

55 Time +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Label the Train Tracks Study Design: Case-Control Study Detectives in the Classroom - Investigation 2-6: The Journey

56 The epidemiologist is not on the journey. Rather, the epidemiologist is waiting at the train station at the end of the journey. As passengers get off the train, the epidemiologist selects sick passengers for the case group and selects passengers who are similar but not sick for the control group. The epidemiologist then asks each person in the case group and control group questions about their exposures during the train ride. The epidemiologist relies on passengers’ memories of their exposures that occurred during the train ride. Label the Train Tracks Case-Control Study Detectives in the Classroom - Investigation 2-6: The Journey

57 Time +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ E DZ Label the Train Tracks - Study Design: Case-Control Study Detectives in the Classroom - Investigation 2-6: The Journey

58 Case-Control Study Observational Study Flow Diagram Flow Diagram Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DZ - E E E E Detectives in the Classroom - Investigation 2-6: The Journey

59 Time +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Label the Train Tracks Study Design: Cross-Sectional Study Detectives in the Classroom - Investigation 2-6: The Journey

60 The epidemiologist, who has not been on the journey, stops the train somewhere during the trip (kind of like a train robbery) and takes a “snapshot” of all the passengers by asking them whether or not they have the exposure and whether or not they have the disease. Then the epidemiologist leaves the train and goes home to analyze the data from that particular day. The journey continues without the epidemiologist. Label the Train Tracks Cross-Sectional Study Detectives in the Classroom - Investigation 2-6: The Journey

61 E DZ Time +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Label the Train Tracks - Study Design: Cross-Sectional Study Detectives in the Classroom - Investigation 2-6: The Journey

62 Cross-Sectional Study Observational Study Flow Diagram Flow Diagram Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ E E - DZ Detectives in the Classroom - Investigation 2-6: The Journey

63 Epi Talk Controlled Trial Epi Talk An epidemiologic experiment in which subjects are assigned into groups to receive or not receive a hypothesized beneficial intervention. Detectives in the Classroom - Investigation 2-6: The Journey

64 Epi Talk Cohort Study Epi Talk An analytical epidemiological study design in which the investigator selects a group of exposed individuals and a group of unexposed individuals and follows both groups to compare the frequency with which the disease occurs in each group. Detectives in the Classroom - Investigation 2-6: The Journey

65 Epi Talk Case-Control Study Epi Talk An analytical epidemiological study design in which the investigator selects a group of individuals with a disease (cases) and a group of similar individuals without the disease (controls) and compares the frequency with which an exposure occurred in the cases versus the controls. Detectives in the Classroom - Investigation 2-6: The Journey

66 Epi Talk Cross-Sectional Study Epi Talk An analytical epidemiological study design in which the investigator selects a group of individuals and determines the presence or absence of a disease and the presence or absence of an exposure at the same time. Detectives in the Classroom - Investigation 2-6: The Journey

67 67

68 Are realistic; simulate the way a person’s understanding is tested in the real world Ask students to “do” the subject rather than simply recall what was taught Require judgment and innovation to address an unstructured problem, rather than following a set routine Require a repertoire of knowledge and skill be used efficiently and effectively Are messy and murky Allow opportunities for rehearsal, practice, consultation, feedback, and refinement Epidemiology and the Energy Balance Equation Characteristics of Authentic Assessments

69 69 Epidemiology and the Energy Balance Equation http://www.teachepidemiology.org/EEBE.html

70 70

71 71 Think Like an Epidemiologist Challenge http://www.njscienceolympiad.org/ Handout

72 Authentic Assessment Teach Epidemiology Epi – Grades 6-12 Are realistic; simulate the way a person’s understanding is tested in the real world Require judgment and innovation to address an unstructured problem, rather than following a set routine Ask students to “do” the subject rather than simply recall what was taught Replicate the context in which a person would be tested at work, in the community, or at home Are messy and murky Require a repertoire of knowledge and skill to be used efficiently and effectively Allow opportunities for rehearsal, practice, consultation, feedback, and refinement

73 73 Epi Challenge http://www.teachepidemiology.org/viewSO1.php

74 74 Epi Challenge http://www.teachepidemiology.org/viewSO2.php

75 Think Like an Epidemiologist Challenge New Jersey Science Olympiad, March 15, 2011 Thank you for competing in the 3 rd Think Like an Epidemiologist Challenge. You worked with others, developed epidemiologic knowledge and skills, and used judgment and innovation to actually "do" epidemiology under pressure. We hope you enjoyed the challenge. Name School Teach Epidemiology Robert Wood Johnson Foundation Detectives in the Classroom Special thanks to the Epidemiology Section of the American Public Health Association for allowing us to distribute their Section pins to the student participants in the 2011 Think Like an Epidemiologist Challenge. Handout

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96 Habits of Mind Research on thinking and behavior reveals some identifiable characteristics of effective thinkers. It is not necessarily scientists, artists, mathematicians, or the wealthy who demonstrate these behaviors. They have been found in mechanics, teachers, entrepreneurs, salespeople, and parents - people in all walks of life. The following habits of mind can be included in project outcomes and assessed through self-reflection, journals, discussions, and rubrics. Adapted from A. L. Costa and B. Kallick, eds., Discovering and Exploring Habits of Mind (Alexandria, Virginia: Association for Supervision and Curriculum Development, 2000) Handout

97 Habits of Mind

98

99

100

101

102

103

104

105

106

107

108

109

110

111 111 Time Check 10:15 AM

112 112

113 113 Teach Epidemiology

114 114 Time Check 10:30 AM

115 115

116 116 Teach Epidemiology

117 Epi Team Challenge Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

118 Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Healthy People - E Random Assignment E DZ Controlled Trial Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Healthy People - E E DZ Cohort Study Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - DZ E E E E Case-Control Study Time ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - E E DZ Cross-Sectional Study DZ What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

119 Epidemiologist is involved during the entire time from exposure to disease. Assign treatment and control groups. Follow through time and compare risk of disease in treatment group with risk of disease in control group. Give exposure to treatment group, but not control group. What’s My Design? Practice Clue Trial Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

120 Assign treatment and control groups. What’s My Design? Clue 1 Begin Epi Team Challenge Trial Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

121 Observational Study Flow Diagram DZ - E E E E Clue 2 Case-Control Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

122 Observational Study Clue 3 What’s My Design? Cohort, Case-Control, and Cross-Sectional Studies Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

123 Follow through time and compare risk of disease in exposed group with risk of disease in the unexposed group. Clue 4 Trial and Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

124 Follow through time and compare risk of disease in treatment group with risk of disease in control group. Give exposure to treatment group, but not control group. Clue 5 Trial What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

125 Epidemiologist is involved during the entire time from exposure to disease. Clue 6 Trial and Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

126 Select a group of people with disease and a similar group of people without disease. Clue 7 Case-Control Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

127 Healthy People Flow Diagram - Healthy People E E Random Assignment Non-Observational Study Clue 8 Trial What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

128 Observational Study Flow Diagram E E - DZ Clue 9 Cross Sectional Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

129 Compare odds of exposure in the two groups. Clue 10 Case-Control Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

130 Healthy People Flow Diagram - Healthy People E E DZ Random Assignment Clue 11 Trial What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

131 Flow Diagram Clue 12 Cross Sectional Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

132 Flow Diagram DZ Observational Study Clue 13 Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

133 Ask each person about both exposure and disease at that point in time. What’s My Design? Clue 14 Cross Sectional Study Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

134 Ask both groups about their exposures in the past. What’s My Design? Clue 15 Case-Control Study Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

135 Healthy People Flow Diagram - Healthy People Random Assignment Clue 16 Trial What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

136 Disease risk in exposed group is compared to disease risk in unexposed group. Clue 17 Trial, Cohort Study, and Cross Sectional Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

137 Flow Diagram E E - DZ Clue 18 Cross Sectional Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

138 Select a healthy study sample. Clue 19 Trial (?) and Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

139 Observe who has and has not been exposed. Clue 20 Cohort and Cross-Sectional Studies What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

140 Clue 21 Give exposure to treatment group, but not control group. Trial What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

141 Healthy People Flow Diagram - Healthy People E E Observational Study Clue 22 Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

142 Epidemiologist is involved after disease has occurred and relies on subjects’ memories to gather information about exposure. Clue 23 Case-Control Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

143 Select a study sample. Clue 24 Trial, Cohort, Case-Control, and Cross Sectional Studies What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

144 Healthy People Flow Diagram - Healthy People E E DZ Observational Study Clue 25 Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

145 Epidemiologist gathers data only at that one point in time. Clue 26 Cross Sectional Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

146 Flow Diagram DZ Clue 27 Trial and Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

147 Follow through time and compare risk of disease in exposed group to risk of disease in unexposed group. Clue 28 Trial and Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

148 Epidemiologist is involved during the entire time from exposure to disease. Clue 29 Trial and Cohort Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

149 Flow Diagram E E DZ Clue 30 Cross Sectional Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

150 Flow Diagram DZ - Clue 31 Case-Control Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

151 Ask each person about both exposure and disease at that point in time. Epidemiologist gathers data only at that one point in time. Disease risk in exposed group is compared to disease risk in unexposed group. Select a study sample. Clue 32 Cross Sectional Study What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

152 Epidemiologist is involved after disease has occurred and relies on subjects’ memories to gather information about exposure. Select a group of people with disease and a similar group of people without disease. Compare percent of exposed people in the two groups. Ask both groups about their exposures in the past. Case-Control Study Clue 33 What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

153 Epidemiologist is involved during the entire time from exposure to disease. Select a healthy study sample. Follow through time and compare risk of disease in exposed group to risk of disease in unexposed group. Observe who has and has not been exposed. Cohort Study Clue 34 What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

154 Epidemiologist is involved during the entire time from exposure to disease. Assign treatment and control groups. Follow through time and compare risk of disease in treatment group with risk of disease in control group. Give exposure to treatment group, but not control group. Trial Clue 35 What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

155 End Epi Team Challenge What’s My Design? Detectives in the Classroom - Investigation 2-7: Epi Team Challenge

156

157 Detectives in the Classroom - Investigation 2-8: Which Design Is Best? Which Design Is Best?

158 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

159 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Cross- Sectional Cohort Case- Control Controlled Trial Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

160 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Which study design is the fastest? Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

161 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Which study designs are the most time consuming? Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

162 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Most Scientifically Sound Which study design is the most scientifically sound? Time Consuming Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

163 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Most Scientifically Sound Can Study Rare Diseases Which study design is best for studying rare diseases? Time Consuming Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

164 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Most Scientifically Sound Possible Time-Order Confusion Can Study Rare Diseases Which study designs do not identify the time order of exposure and disease? Time Consuming Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

165 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Possible Time-Order Confusion Can Study Rare Diseases Which study design gives the least confidence in findings? Time Consuming Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

166 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Best Measure of Exposure Possible Time-Order Confusion Can Study Rare Diseases Which study design provides the best measure of exposure? Time Consuming Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

167 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Best Measure of Exposure Possible Time-Order Confusion Can Study Rare Diseases Most Accurate Observational Study Which study design is the most accurate observational study? Time Consuming Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

168 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Best Measure of Exposure Possible Time-Order Confusion Can Study Rare Diseases Least Expensive Most Accurate Observational Study Which study design is the least expensive? Time Consuming Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

169 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Best Measure of Exposure Possible Time-Order Confusion Can Study Rare Diseases Least Expensive Unethical for Harmful Exposures Most Accurate Observational Study Which study design would be unethical for harmful exposures? Time Consuming Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

170 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Best Measure of Exposure Possible Time-Order Confusion Can Study Rare Diseases Least Expensive Good Measure of Exposure Which study design provides a good measure of exposure? Most Accurate Observational Study Time Consuming Unethical for Harmful exposures Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

171 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Best Measure of Exposure Possible Time-Order Confusion Can Study Rare Diseases Least Expensive Most Expensive Most Accurate Observational Study Which study designs are the most expensive? Good Measure of Exposure Time Consuming Unethical for Harmful exposures Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

172 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Best Measure of Exposure Possible Time-Order Confusion Can Study Rare Diseases Least Expensive Relatively Less Expensive and Relatively Fast Most Accurate Observational Study Which study design is relatively less expensive and relatively fast? Time Consuming Unethical for Harmful exposures Most Expensive Good Measure of Exposure Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

173 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Least Confidence in Findings Most Scientifically Sound Best Measure of Exposure Possible Time-Order Confusion Can Study Rare Diseases Least Expensive Relatively Less Expensive and Relatively Fast Possible Error in Recalling Past Exposures Most Accurate Observational Study Which study design creates the possibility of error in recalling past exposures? Time Consuming Unethical for Harmful exposures Most Expensive Good Measure of Exposure Epi Team Challenge Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

174 Cross-Sectional Study Case-Control Study Cohort Study Trial Main WeaknessesMain StrengthsStudy Designs 1 5 6 2 3 7 8 4 Fastest Time Consuming Most Scientifically Sound Best Measure of Exposure Can Study Rare Diseases Least Expensive Relatively Less Expensive and Relatively Fast Possible Error in Recalling Exposures Most Accurate Observational Study Which Design Is Best? Time Consuming Unethical for Harmful exposures Most Expensive Possible Time-Order Confusion Least Confidence in Findings Good Measure of Exposure It depends …. Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

175 It depends on …. Regulations Time urgency How much is known about the association Money Whether the exposure is believed to be beneficial Detectives in the Classroom - Investigation 2-8: Which Design Is Best?

176

177 DZ E E d b c a Flow Diagram 2x2 Table Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables & “fit” Designs, Diagrams, and Tables Healthy People - E E DZ

178 E E a 2x2 Table Where do these people “fit” in the 2x2 table? Flow Diagram Controlled Trial Healthy People E E DZ Random Assignment Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

179 DZ E E b Flow Diagram 2x2 Table Healthy People E E DZ Random Assignment Where do these people “fit” in the 2x2 table? Controlled Trial Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

180 DZ E E c Flow Diagram 2x2 Table Flow Diagram Healthy People E E DZ Random Assignment Where do these people “fit” in the 2x2 table? Controlled Trial Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

181 DZ E E d 2x2 Table Flow Diagram Healthy People E E DZ Random Assignment Where do these people “fit” in the 2x2 table? Controlled Trial Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

182 DZ E E c Flow Diagram 2x2 Table Where are these people in the flow diagram? Cohort Study Healthy People E E DZ Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

183 DZ E E a 2x2 Table Where are these people in the flow diagram? Flow Diagram Cohort Study Healthy People E E DZ Healthy People Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

184 DZ E E d Flow Diagram 2x2 Table Where are these people in the flow diagram? Cohort Study Healthy People E E DZ Healthy People Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

185 DZ E E b Flow Diagram 2x2 Table Where are these people in the flow diagram? Cohort Study Healthy People E E DZ Healthy People Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

186 DZ E E a Where do these people go in the 2x2 table? 2x2 Table Flow Diagram Case-Control Study DZ E E E E Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

187 DZ E E c Where do these people go in the 2x2 table? Flow Diagram 2x2 Table Case-Control Study DZ E E E E Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

188 Flow Diagram DZ E E b 2x2 Table Where do these people go in the 2x2 table? Case-Control Study DZ E E E E Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

189 Flow Diagram DZ E E d 2x2 Table Where do these people go in the 2x2 table? Case-Control Study DZ E E E E Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

190 DZ E E a Flow Diagram 2x2 Table Where do these people go in the 2x2 table? Cross-Sectional Study E E DZ Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

191 DZ E E c Flow Diagram 2x2 Table Where do these people go in the 2x2 table? Cross-Sectional Study E E DZ Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

192 DZ E E d Flow Diagram 2x2 Table Where do these people go in the 2x2 table? Cross-Sectional Study E E DZ Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

193 DZ E E b Flow Diagram 2x2 Table Where do these people go in the 2x2 table? Cross-Sectional Study E E DZ Detectives in the Classroom – Investigation 2-9: Designs, Diagrams, and Tables

194 The goal of every epidemiological study is to harvest valid and precise information about the relationship between an exposure and a disease in a population. The various study designs merely represent different ways of harvesting this information. Essentials in Epidemiology in Public Health Ann Aschengrau and George R. Seage III Making Group Comparisons and Identifying Associations Teach Epidemiology

195 195 National Research Council, Learning and Understanding Teach Epidemiology Enduring Epidemiological Understandings Knowledge that “… is connected and organized, and … ‘conditionalized’ to specify the context in which it is applicable.”

196 196 Time Check 11:00 AM

197 197

198 198 Teach Epidemiology

199 199 Time Check Noon

200 200

201 201 Teach Epidemiology

202 202 Time Check 1:00 PM

203 203

204 204 Teach Epidemiology

205 205 Time Check 1:00 PM

206 206

207 207 Teach Epidemiology

208 208 Teach Epidemiology Teachers Team-Teaching Teachers (TTTT)

209 209 They can then use that ability to think about their own thinking … to grasp how other people might learn. They know what has to come first, and they can distinguish between foundational concepts and elaborations or illustrations of those ideas. They realize where people are likely to face difficulties developing their own comprehension, and they can use that understanding to simplify and clarify complex topics for others, tell the right story, or raise a powerfully provocative question. Ken Bain, What the Best College Teachers Do Metacognition Teach Epidemiology Epi – Grades 6-12

210 210 National Research Council, Learning and Understanding Teach Epidemiology Enduring Epidemiological Understandings Knowledge that “… is connected and organized, and … ‘conditionalized’ to specify the context in which it is applicable.”

211 211 Time Check 2:00 PM

212 212

213 213 Teach Epidemiology

214 214 Teach Epidemiology Teachers Team-Teaching Teachers (TTTT)

215 215 They can then use that ability to think about their own thinking … to grasp how other people might learn. They know what has to come first, and they can distinguish between foundational concepts and elaborations or illustrations of those ideas. They realize where people are likely to face difficulties developing their own comprehension, and they can use that understanding to simplify and clarify complex topics for others, tell the right story, or raise a powerfully provocative question. Ken Bain, What the Best College Teachers Do Metacognition Teach Epidemiology Epi – Grades 6-12

216 216 National Research Council, Learning and Understanding Teach Epidemiology Enduring Epidemiological Understandings Knowledge that “… is connected and organized, and … ‘conditionalized’ to specify the context in which it is applicable.”

217 217 Time Check 2:45 PM

218 218

219 219 Teach Epidemiology

220 220 Time Check 3:00 PM

221 221

222 222 Teach Epidemiology

223 223 Teach Epidemiology Teachers Team-Teaching Teachers (TTTT)

224 224 Teach Epidemiology Teachers Team-Teaching Teachers (TTTT)

225 225 They can then use that ability to think about their own thinking … to grasp how other people might learn. They know what has to come first, and they can distinguish between foundational concepts and elaborations or illustrations of those ideas. They realize where people are likely to face difficulties developing their own comprehension, and they can use that understanding to simplify and clarify complex topics for others, tell the right story, or raise a powerfully provocative question. Ken Bain, What the Best College Teachers Do Metacognition Teach Epidemiology Epi – Grades 6-12

226 226 National Research Council, Learning and Understanding Teach Epidemiology Enduring Epidemiological Understandings Knowledge that “… is connected and organized, and … ‘conditionalized’ to specify the context in which it is applicable.”

227 227

228 228 Critical Reviews

229

230

231

232

233

234

235

236

237

238

239

240

241 241

242 242

243 243 Time Check 4:00 PM


Download ppt "Centers for Disease Control and Prevention Morgantown, West Virginia June 20-24, 2011 Teach Epidemiology Professional Development Workshop Day 3."

Similar presentations


Ads by Google