Download presentation
Presentation is loading. Please wait.
Published byCharlene Ramsey Modified over 9 years ago
1
SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti R.Passaquieti D.Passuello R.Poggiani Florence-Urbino E.Cuoco G.Calamai G.Guidi G.Losurdo M.Mazzoni R.Stanga F.Vetrano A.Vicere’ Rome M.Bonafede E.Bompiani E.Majorana P.Puppo P.Rapagnani F.Ricci Naples E.Calloni L.DiFiore M.Varvella Perugia P.Amico L.Carbone F.Marchesoni L.Gammaitoni M.Punturo H.Vocca S.Braccini EGO G.Ballardin A.Gennai G.Gennaro P.Lapenna R.Taddei LIGO-G030017-00-D
2
Introduction Mirror Swing Reduction Mirror Local Controls Attenuation Measurements
3
Extend the detection band down to a few Hz VIRGO GOAL Ground Seismic Vibrations are very strong below several tens of Hz
4
VIRGO Suspensions SA design e freccette Residual seismic mirror vibrations below the thermal noise floor starting from a few Hz Ground Mirror
5
SA design e freccette Seismic Noise 10 -7 f -2 m Hz -1/2 ~ 3 10 -15 f -5/2 m Hz -1/2 Mirror Thermal Displacement Specification on Horizontal transmission 8 orders of magnitude attenuation @ a few Hz
6
Specification on Vertical transmission SA design e freccette Seismic Noise 10 -7 f -2 m Hz -1/2 ~ 3 10 -15 f -5/2 m Hz -1/2 Mirror Thermal Displacement Several orders of magnitude attenuation @ a few Hz
7
Suspension Working Principle ground mirror Horizontal Attenuation Long Pendula !!! resonances f -2N Transfer Function Frequency (Hz) 2 Hz
8
SA design e freccette 8 m Chain maximum horizontal frequency around 2 Hz Suspension Working Principle
9
resonances f -2N Transfer Function Frequency (Hz) Vertical Attenuation Soft Springs !!! ground mirror 2 Hz
10
Suspension Working Principle SA design e freccette
11
Blade Spring Top View Blade Spring Side View Blade Springs
12
Mechanical Filter K tot = K blades - K magnets Chain maximum vertical frequency around 2 Hz
13
6 m-long Inverted Pendulum Top filter Pre-Isolator Ground Flex Joint Filter Chain
14
Pre-Isolator M L Flex joint (elastic element) Ultra - low frequency oscillator (30 mHz) INVERTED PENDULUM g
15
6 m-long Inverted Pendulum Filter Chain Ground Pre-Isolator F = K x = M x
16
Expected Performances Hor Ver 1 10 -10 10 -20 1101000.1 Transfer Function Freq (Hz)
17
Crossing point Expected Residual Seismic Noise “Seismic Wall”
18
Beam Splitter
19
SA design e freccette Top Stage Actuators 3 Lines 2.25 Hz 4.1 Hz 9.8 Hz Direct Measurement Central Interferometer used as sensor
20
Results for Horizontal Transmission @ 2.25 Hz 5 10e-6
21
Results for Horizontal Transmission @ 4.1 Hz < 6 10e-8 This is only an upper limit !!!
22
SA design e freccette Attenuation by Inverted Pendulum Measured Horizontal Transmission Ground Seismic Noise 10 -7 f -2 m Hz -1/2 Input Top Seismic Noise
23
Top Stage Seismic Noise on beam direction 7 10 -11 m Hz -1/2 Top Ground
24
Residual Mirror Seismic Noise Input Seismic Noise on Top Stage 7 10 -11 m Hz -1/2 X Chain Transmission Upper Limit 6 10 -8 Upper Limit of Residual Noise 4 10 -18 m Hz -1/2
25
Residual Seismic Noise Upper Limit @ 4.1 Hz 4 10 -18 m Hz -1/2 < Thermal Noise @ 4.1 Hz 9 10 -17 m Hz -1/2 !!! Mirror displacement induced by horizontal seismic noise
26
Measured Vertical Transmission @ 2.25 Hz 1.5 10e-6
27
Measured Vertical Transmission @ 4.15 Hz < 10e-8
28
Top Stage Seismic Noise 2 10 -9 m Hz -1/2 Top Ground
29
Residual Seismic Noise Upper Limit @ 4.1 Hz 2 10 -17 m Hz -1/2 < Thermal Noise @ 4.1 Hz 9 10 -17 m Hz -1/2 !!! Mirror displacement induced by vertical seismic noise
30
Passive attenuation is enough but ….….... Chain resonant frequencies (0.1 Hz < f < 2 Hz) induce tens of microns mirror swings
31
Mirror swing reduction 1 – Help locking acquisition Crossing Permanence time has to be small Mirror Optical Surface
32
2 - Allow noiseless control of the interferometer Maximum compensation “close to the mirror” is about one micron Mirror Mirror swing reduction
33
Specifications for mirror swing rms mirror velocity smaller than a few tenths of micron per second rms mirror displacement smaller than one micron (on a time scale of 10 s)
34
6 m-long Inverted Pendulum Filter Chain Top stage Fixed Stars Floor Inertial Damping
35
ADC DSPDAC Inertial Damping Coil-Magnet Actuators Accelerometers
36
Accelerometer Signal Lp Butterworth filter Integrator T … N Slices rms Inertial Damping Stability N consecutive measurements of rms velocity
37
WI PR BSNI Distribution of 10 s velocity rms Inertial Damping Stability
38
Top-stage RMS Time (s) rms velocity ( m/s) Open Loop Closed Loop
39
m/s Hz -1/2 Hz Mirror velocity spectrum Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode
40
Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode Mirror velocity spectrum mm Hz 0.5 microns per second m/s
41
Mirror velocity spectrum Fringe signal
42
Actual Contribution to velocity rms is 0.37 m/s Cure Better crossing LVDT-Accelerometers in Inertial Damping Loop or Top Stage Control IP Contribute
43
Pendulum Contribute Actual Contribution to velocity rms is 0.26 m/s Cure Damping from ground based actuators
44
Actual Contribution to velocity rms is 0.13 m/s Cure Inertial Damping from Top 0.45 Hz Contribute
45
Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode Mirror velocity spectrum mm Hz 0.5 microns per second m/s
46
SA design e freccette Is the mirror slow ?
49
Mirror Displacement Rms displacement is a few tenths of m @ 100 mHz
50
Mirror Swing Specifications rms mirror velocity smaller than a few tenths of microns per second rms mirror displacement smaller than one micron on time scales larger than 10 s
51
Last Stage Coils Marionetta Mirror Reference Mass Beam Reference Mass Mirror Beam Coils Marionetta
52
Digital Camera reads the mirror position in all degrees of freedom
53
Mirror Angular Control Specifications To reduce angular swings from a few tens of microradians down to one microradian Pitch Swing x Yaw Swing y
54
Angular displacements xx yy
55
0.11101001000 rms angular displacement (microradians) Theta x Theta y Angular rms 1 rad 1 10 100 1000 Time (seconds) 0.1 1
56
CONCLUSIONS Vertical and horizontal seismic vibrations induce mirror displacements smaller than thermal noise even around 4 Hz The mirror swing amplitude has been decreased within the specifications Camera control reduces the angular swings of the mirror down to less than one microradian
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.