Presentation is loading. Please wait.

Presentation is loading. Please wait.

SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti.

Similar presentations


Presentation on theme: "SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti."— Presentation transcript:

1 SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti R.Passaquieti D.Passuello R.Poggiani Florence-Urbino E.Cuoco G.Calamai G.Guidi G.Losurdo M.Mazzoni R.Stanga F.Vetrano A.Vicere’ Rome M.Bonafede E.Bompiani E.Majorana P.Puppo P.Rapagnani F.Ricci Naples E.Calloni L.DiFiore M.Varvella Perugia P.Amico L.Carbone F.Marchesoni L.Gammaitoni M.Punturo H.Vocca S.Braccini EGO G.Ballardin A.Gennai G.Gennaro P.Lapenna R.Taddei LIGO-G030017-00-D

2 Introduction Mirror Swing Reduction Mirror Local Controls Attenuation Measurements

3 Extend the detection band down to a few Hz VIRGO GOAL Ground Seismic Vibrations are very strong below several tens of Hz

4 VIRGO Suspensions SA design e freccette Residual seismic mirror vibrations below the thermal noise floor starting from a few Hz Ground Mirror

5 SA design e freccette Seismic Noise  10 -7 f -2 m Hz -1/2 ~ 3 10 -15 f -5/2 m Hz -1/2 Mirror Thermal Displacement Specification on Horizontal transmission 8 orders of magnitude attenuation @ a few Hz

6 Specification on Vertical transmission SA design e freccette Seismic Noise  10 -7 f -2 m Hz -1/2 ~ 3 10 -15 f -5/2 m Hz -1/2 Mirror Thermal Displacement Several orders of magnitude attenuation @ a few Hz

7 Suspension Working Principle ground mirror Horizontal Attenuation Long Pendula !!! resonances f -2N Transfer Function Frequency (Hz) 2 Hz

8 SA design e freccette 8 m Chain maximum horizontal frequency around 2 Hz Suspension Working Principle

9 resonances f -2N Transfer Function Frequency (Hz) Vertical Attenuation Soft Springs !!! ground mirror 2 Hz

10 Suspension Working Principle SA design e freccette

11 Blade Spring Top View Blade Spring Side View Blade Springs

12 Mechanical Filter K tot = K blades - K magnets Chain maximum vertical frequency around 2 Hz

13 6 m-long Inverted Pendulum Top filter Pre-Isolator Ground Flex Joint Filter Chain

14 Pre-Isolator M L Flex joint (elastic element) Ultra - low frequency oscillator (30 mHz) INVERTED PENDULUM g

15 6 m-long Inverted Pendulum Filter Chain Ground Pre-Isolator F = K x = M   x

16 Expected Performances Hor Ver 1 10 -10 10 -20 1101000.1 Transfer Function Freq (Hz)

17 Crossing point Expected Residual Seismic Noise “Seismic Wall”

18 Beam Splitter

19 SA design e freccette Top Stage Actuators 3 Lines 2.25 Hz 4.1 Hz 9.8 Hz Direct Measurement Central Interferometer used as sensor

20 Results for Horizontal Transmission @ 2.25 Hz 5  10e-6

21 Results for Horizontal Transmission @ 4.1 Hz < 6  10e-8 This is only an upper limit !!!

22 SA design e freccette Attenuation by Inverted Pendulum Measured Horizontal Transmission Ground Seismic Noise  10 -7 f -2 m Hz -1/2 Input Top Seismic Noise

23 Top Stage Seismic Noise on beam direction 7  10 -11 m  Hz -1/2 Top Ground

24 Residual Mirror Seismic Noise Input Seismic Noise on Top Stage 7  10 -11 m  Hz -1/2 X Chain Transmission Upper Limit 6  10 -8 Upper Limit of Residual Noise 4  10 -18 m  Hz -1/2

25 Residual Seismic Noise Upper Limit @ 4.1 Hz 4  10 -18 m  Hz -1/2 < Thermal Noise @ 4.1 Hz 9  10 -17 m  Hz -1/2 !!! Mirror displacement induced by horizontal seismic noise

26 Measured Vertical Transmission @ 2.25 Hz 1.5  10e-6

27 Measured Vertical Transmission @ 4.15 Hz < 10e-8

28 Top Stage Seismic Noise 2  10 -9 m  Hz -1/2 Top Ground

29 Residual Seismic Noise Upper Limit @ 4.1 Hz 2  10 -17 m  Hz -1/2 < Thermal Noise @ 4.1 Hz 9  10 -17 m  Hz -1/2 !!! Mirror displacement induced by vertical seismic noise

30 Passive attenuation is enough but ….….... Chain resonant frequencies (0.1 Hz < f < 2 Hz) induce tens of microns mirror swings

31 Mirror swing reduction 1 – Help locking acquisition Crossing   Permanence time has to be small Mirror Optical Surface

32 2 - Allow noiseless control of the interferometer Maximum compensation “close to the mirror” is about one micron Mirror Mirror swing reduction

33 Specifications for mirror swing rms mirror velocity smaller than a few tenths of micron per second rms mirror displacement smaller than one micron (on a time scale of 10 s)

34 6 m-long Inverted Pendulum Filter Chain Top stage Fixed Stars Floor Inertial Damping

35 ADC DSPDAC Inertial Damping Coil-Magnet Actuators Accelerometers

36 Accelerometer Signal Lp Butterworth filter Integrator T … N Slices rms Inertial Damping Stability N consecutive measurements of rms velocity

37 WI PR BSNI Distribution of 10 s velocity rms Inertial Damping Stability

38 Top-stage RMS Time (s) rms velocity (  m/s) Open Loop Closed Loop

39  m/s  Hz -1/2 Hz Mirror velocity spectrum Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode

40 Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode Mirror velocity spectrum mm Hz 0.5 microns per second  m/s

41 Mirror velocity spectrum Fringe signal

42 Actual Contribution to velocity rms is 0.37  m/s Cure Better crossing LVDT-Accelerometers in Inertial Damping Loop or Top Stage Control IP Contribute

43 Pendulum Contribute Actual Contribution to velocity rms is 0.26  m/s Cure Damping from ground based actuators

44 Actual Contribution to velocity rms is 0.13  m/s Cure Inertial Damping from Top 0.45 Hz Contribute

45 Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode Mirror velocity spectrum mm Hz 0.5 microns per second  m/s

46 SA design e freccette Is the mirror slow ?

47

48

49 Mirror Displacement Rms displacement is a few tenths of  m @ 100 mHz

50 Mirror Swing Specifications rms mirror velocity smaller than a few tenths of microns per second rms mirror displacement smaller than one micron on time scales larger than 10 s

51 Last Stage Coils Marionetta Mirror Reference Mass Beam Reference Mass Mirror Beam Coils Marionetta

52 Digital Camera reads the mirror position in all degrees of freedom

53 Mirror Angular Control Specifications To reduce angular swings from a few tens of microradians down to one microradian Pitch Swing  x Yaw Swing  y

54 Angular displacements xx yy

55 0.11101001000 rms angular displacement (microradians) Theta x Theta y Angular rms 1  rad 1 10 100 1000 Time (seconds) 0.1 1

56 CONCLUSIONS Vertical and horizontal seismic vibrations induce mirror displacements smaller than thermal noise even around 4 Hz The mirror swing amplitude has been decreased within the specifications Camera control reduces the angular swings of the mirror down to less than one microradian


Download ppt "SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti."

Similar presentations


Ads by Google