Download presentation
Presentation is loading. Please wait.
Published byPolly Norris Modified over 8 years ago
1
Penn ESE370 Fall2014 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 17, 2014 MOS Model
2
You are Here Previously: simple models –Comfortable with basic functions and circuits This week and next (4 lectures) –Detail semiconductor, MOSFET phenomenology Don’t Blink! Rest of terms –Implications Penn ESE370 Fall2014 -- DeHon 2
3
Today MOS Structure Basic Idea Semiconductor Physics –Metals, insulators –Silicon lattice –Band Gaps –Doping Penn ESE370 Fall2014 -- DeHon 3
4
MOS Metal Oxide Semiconductor Penn ESE370 Fall2014 -- DeHon 4
5
MOS Metal – gate Oxide – insulator separating gate from channel –Ideally: no conduction from gate to channel Semiconductor – between source and drain See why gate input capacitive? Penn ESE370 Fall2014 -- DeHon 5 channel gate srcdrain
6
Penn ESE370 Fall2014 -- DeHon 6 channel gate srcdrain Capacitor Charge distribution and field?
7
Idea Semiconductor – can behave as metal or insulator Voltage on gate creates an electrical field Field pulls (repels) charge from channel –Causing semiconductor to switch conduction –Hence “Field-Effect” Transistor Penn ESE370 Fall2014 -- DeHon 7 channel gate srcdrain
8
Source/Drain Contacts Penn ESE370 Fall2014 -- DeHon 8 Contacts: Conductors metalic –Connect to metal wires that connect transistors
9
Fabrication Start with Silicon wafer Dope Grow Oxide (SiO 2 ) Deposit Metal Mask/Etch to define where features go Penn ESE370 Fall2014 -- DeHon 9 http://www.youtube.com/watch?v=35jWSQXku74 Cartoon fab seq.: t=2min—4min
10
Penn ESE370 Fall2014 -- DeHon 10 Dimensions Channel Length (L) Channel Width (W) Oxide Thickness (T ox ) Process named by minimum length –22nm L=22nm
11
Semiconductor Physics Penn ESE370 Fall2014 -- DeHon 11
12
Conduction Metal – conducts Insulator – does not conduct Semiconductor – can act as either Penn ESE370 Fall2014 -- DeHon 12
13
Why metal conduct? (periodic table) Penn ESE370 Fall2014 -- DeHon 13 http://chemistry.about.com/od/imagesclipartstructures/ig/Science-Pictures/Periodic-Table-of-the-Elements.htm
14
Why metal conduct? Penn ESE370 Fall2014 -- DeHon 14 http://commons.wikimedia.org/wiki/File:Periodic_Table_of_Elements_showing_Electron_Shells.svg
15
Conduction Electrons move Must be able to “remove” electron from atom or molecule Penn ESE370 Fall2014 -- DeHon 15
16
Atomic States Quantized Energy Levels Must have enough energy to change level (state) Penn ESE370 Fall2014 -- DeHon 16
17
Thermal Energy Except at absolute 0 –There is always free energy –Causes electrons to hop around ….when enough energy to change states –Energy gap between states determines energy required Penn ESE370 Fall2014 -- DeHon 17
18
Silicon Atom How many valence electrons? Penn ESE370 Fall2014 -- DeHon 18
19
Silicon 4 valence electrons –Inner shells filled –Only outer shells contribute to chemical interactions Penn ESE370 Fall2014 -- DeHon 19
20
Silicon-Silicon Bonding Can form covalent bonds with 4 other silicon atoms Penn ESE370 Fall2014 -- DeHon 20
21
Silicon Lattice Forms into crystal lattice Penn ESE370 Fall2014 -- DeHon 21 http://www.webelements.com/silicon/crystal_structure.html
22
Silicon Lattice Cartoon two-dimensional view Penn ESE370 Fall2014 -- DeHon 22
23
Outer Orbital? What happens to outer shell in Silicon lattice? Penn ESE370 Fall2014 -- DeHon 23
24
Energy? What does this say about energy to move electron? Penn ESE370 Fall2014 -- DeHon 24
25
State View Penn ESE370 Fall2014 -- DeHon 25 Valance Band – all states filled Energy
26
State View Penn ESE370 Fall2014 -- DeHon 26 Valance Band – all states filled Energy Conduction Band– all states empty
27
Band Gap and Conduction Penn ESE370 Fall2014 -- DeHon 27 EcEc EvEv EvEv EcEc EvEv EcEc OR InsulatorMetal 8ev EvEv EcEc Semiconductor 1.1ev
28
Doping Add impurities to Silicon Lattice –Replace a Si atom at a lattice site with another Penn ESE370 Fall2014 -- DeHon 28
29
Doping Add impurities to Silicon Lattice –Replace a Si atom at a lattice site with another E.g. add a Group 15 element –E.g. P (Phosphorus) –How many valence electrons? Penn ESE370 Fall2014 -- DeHon 29
30
Doping with P Penn ESE370 Fall2014 -- DeHon 30
31
Doping with P End up with extra electrons –Donor electrons Not tightly bound to atom –Low energy to displace –Easy for these electrons to move Penn ESE370 Fall2014 -- DeHon 31
32
Doped Band Gaps Addition of donor electrons makes more metallic –Easier to conduct Penn ESE370 Fall2014 -- DeHon 32 EvEv EcEc Semiconductor 1.1ev EDED 0.045ev
33
Localized Electron is localized Won’t go far if no low energy states nearby Increase doping concentration –Fraction of P’s to Si’s –Decreases energy to conduct Penn ESE370 Fall2014 -- DeHon 33
34
Electron Conduction Penn ESE370 Fall2014 -- DeHon 34
35
Electron Conduction Penn ESE370 Fall2014 -- DeHon 35
36
Capacitor Charge Remember capacitor charge Penn ESE370 Fall2014 -- DeHon 36 + + + + - - - - - - - - -
37
MOS Field? What does “capacitor” field do to the doped semiconductor channel? Penn ESE370 Fall2014 -- DeHon 37 - - - Vgs=0 No field + + + + + - - - = Vgs>0 Conducts + + + + - - - Vcap>0
38
+ + + + + - - - MOS Field Effect Charge on capacitor –Attract or repel charge in channel –Change the donors in the channel –Modulates conduction –Positive Attracts carriers –Enables conduction –Negative? Repel carriers –Disable conduction Penn ESE370 Fall2014 -- DeHon 38
39
Group 13 What happens if we replace Si atoms with group 13 atom instead? –E.g. B (Boron) –Valance band electrons? Penn ESE370 Fall2014 -- DeHon 39
40
Doping with B End up with electron vacancies -- Holes –Acceptor electron sites Easy for electrons to shift into these sites –Low energy to displace –Easy for the electrons to move Movement of an electron best viewed as movement of hole Penn ESE370 Fall2014 -- DeHon 40
41
Hole Conduction Penn ESE370 Fall2014 -- DeHon 41
42
Doped Band Gaps Addition of acceptor sites makes more metallic –Easier to conduct Penn ESE370 Fall2014 -- DeHon 42 EvEv EcEc Semiconductor 1.1ev EAEA 0.045ev
43
Field Effect? Effect of positive field on Acceptor- doped Silicon? Penn ESE370 Fall2014 -- DeHon 43 + + + Vgs=0 No field + + + + - - - Vcap>0 Vgs>0 No conduction
44
Field Effect? Effect of negative field on Acceptor- doped Silicon? Penn ESE370 Fall2014 -- DeHon 44 + + + +++++ - - - Vgs=0 No field + - - - + + + Vcap<0 Vgs<0 Conduction
45
MOSFETs Donor doping –Excess electrons –Negative or N-type material –NFET Acceptor doping –Excess holes –Positive or P-type material –PFET Penn ESE370 Fall2014 -- DeHon 45
46
MOSFET Semiconductor can act like metal or insulator Use field to modulate conduction state of semiconductor Penn ESE370 Fall2014 -- DeHon 46 - - - + + + + +
47
Admin HW 3 due tomorrow New Ketterer combo on Piazza Friday: back here for lecture –MOS Transistor Basics HW4 is out Penn ESE370 Fall2014 -- DeHon 47
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.