Download presentation
Presentation is loading. Please wait.
Published byLiliana Wade Modified over 9 years ago
1
FACSIMILE Arsineh Hecobian Jaemeen Baek
2
Index Important Functions of Facsimile Model Run Examples Application: HONO Reaction Conclusion
3
Overview A user-friendly computer program for modeling chemical kinetics and transport Develop useful models rapidly, with specific facilities for modeling chemical kinetics Handle very stiff ordinary differential equations with the robust numerical integrator a predictor-corrector technique The values of the solution vector at the end of a step are first predicted, and are then corrected to satisfy the differential equations by a few Newton iterations
4
Important Functions of Facsimile 4 Model Types Homogeneous chemical reaction scheme Chemistry with flow and diffusion Fitting model to data 2-Dimensional flow with diffusion Reaction Database Thousands of reactions from many database (NIST Chemical Kinetics, NDRL/NIST Solution Kinetics, SGTE pure element, etc.)
5
Homogeneous chemical reaction Illustrates simple chemical reaction kfkr H2 = H + H101 H + O2 = OH + O 2002
6
Chemistry with flow and diffusion Simulates chemical kinetics, plug flow (1-D) and diffusion along a pipe c: A species concentration t: time x: The distance along the pipe Q: The net production/destruction rate of the species due to the chemical reaction D: The species diffusion constant u: The flow velocity
7
Fitting model to data Fits unknown parameters in the model to experimental data (A B) time A B 0.22.0198 0.30.9079.1 0.40.4089.6 0.50.1839.8 The reaction equation for data => find k
8
2-Dimensional flow with diffusion Similar to the Advection-Diffusion model Simulates transport through a two- dimensional matrix Reactants can flow from one cell to the next in either dimension From a cell (x, y) to (x,y+1) or (x+1,y), and can diffuse to any adjacent cell ie from (x,y) to (x,y+1), (x,y-1), (x-1,y) and (x+1,y)
9
Model Run – Main Menu Main Menu Model Wizard
10
Model Run – Homogeneous Rxn % k1db : O3 + O = O2 + O2; % k2db : O2x + O3 = O + O2 + O2; % k3db : Ox + O3 = O + O + O2; % k4db : Ox + O3 = O2 + O2; % k5db : O3 + M = O + O2; % k6db : H + O3 = OH + O2; % k7db : H + O3 = OH + O2; % k8db : O3 + OH = HO2 + O2; % k9db : HO2 + O3 = OH + O2 + O2; % k10db : O3 + M = O + O2; % k11db : O + O3 = O2 + O2; % k12db : OH + O3 = HO2 + O2; % k13db : HO2 + O3 = OH + O2 + O2; % k14db : O + O2 = O3; % k15db : O + O2 + M = O3 + M; *.fac
11
Model Run – Homogeneous Rxn Initial concentration Time steps
12
Model Run – Homogeneous Rxn
13
Homogeneous Reaction * Generated by FACSIMILE Reaction Wizard - Tuesday, November 25, 2003 ; EXECUTE OPEN 8 "C:\ESRI\homo.out"; PARAMETER TEMP 298 ; PARAMETER k1db k2db 2.30E+09 k3db 7.20E+13 k4db 7.20E+13 k5db k6db 1.60E+13 k7db k8db k9db 1.21E+09 k10db k11db 2.35E+13 k12db 1.93E+10 k13db 7.83E+10 k14db 1.69E+09 k15db 8.90E+09 k16db 1.05E+14 ; VARIABLE H HO2 M O Ox O2 O2x O3 OH ; COMPILE INSTANT; HO2 = 0.00000001 ; M = 0.0005 ; O2 = 0.0001 ; **; COMPILE INITIAL; k1db = 5.20E+12 * EXP(-2090/TEMP) ; k5db = 4.60E+16 * TEMP@(-0.44) * EXP(-11930.0/TEMP) ; k7db = 9.00E+12 * TEMP@(0.5) * EXP(-2010.0/TEMP) ; k8db = 7.80E+11 * EXP(-960/TEMP) ; k10db = 4.60E+16 * TEMP@(-0.44) * EXP(-11930.0/TEMP) ; **; COMPILE EQUATIONS ; % k1db : O3 + O = O2 + O2; % k2db : O2x + O3 = O + O2 + O2; % k3db : Ox + O3 = O + O + O2; % k4db : Ox + O3 = O2 + O2; % k5db : O3 + M = O + O2; % k6db : H + O3 = OH + O2; % k7db : H + O3 = OH + O2; % k8db : O3 + OH = HO2 + O2; % k9db : HO2 + O3 = OH + O2 + O2; % k10db : O3 + M = O + O2; % k11db : H + O3 = OH + O2; % k12db : O + O3 = O2 + O2; % k13db : OH + O3 = HO2 + O2; % k14db : HO2 + O3 = OH + O2 + O2; % k15db : O + O2 = O3; % k16db : O + O2 + M = O3 + M; **; SETPSTREAM 1 8 ; TIME ; H HO2 M O Ox O2 O2x ; O3 OH ; **; COMPILE OUT ; PSTREAM 1 ; **; WHENEVER TIME= 20 * (+0.5) 0 % CALL OUT; **; BEGIN; STOP; VARIABLE H HO2 M O Ox O2 O2x O3 OH k1db = 5.20E+12 * EXP(-2090/TEMP) ; k5db = 4.60E+16 * TEMP@(-0.44) * EXP(-11930.0/TEMP) ; k7db = 9.00E+12 * TEMP@(0.5) * EXP(-2010.0/TEMP) ; k8db = 7.80E+11 * EXP(-960/TEMP) ; PARAMETER TEMP 298 PARAMETER k1db k2db 2.30E+09 k3db 7.20E+13 k4db 7.20E+13 k5db k6db 1.60E+13 k7db k8db k9db 1.21E+09 k10db k11db 2.35E+13 k12db 1.93E+10
14
Model Run – 2-D Flow & Diffusion
18
Application: HONO Reaction Production of HONO (Nitrous Acid) from mixing OH and NO This experiment was used to make a known amount of HONO (in lab) to be used to calibrate an LIF (Laser Induced Fluorescence) instrument which will be used to measure ambient HONO concentrations
19
Experimental setup Hg Lamp OH +H, N 2 H 2 O + N 2 NO NO, OH, H, O 2, H 2 O, H 2 O 2, HO 2 O 3, HNO 3, O, NO 2, N 2,… LIF 2”
20
Reactions Main Reaction OH + NO + [M] HONO + [M] Other Reactions OH + OH + [M] H 2 O 2 + [M] OH + OH H 2 0 + O OH + HOOH H 2 O + H0 2 OH + HO 2 H 2 O + O 2 And more…
21
Facsimile model setup Set Conditions: T = 293K P = 1013 mb 29 reactions and their rate constants were used in this model Using (H 2 O + hv OH + H) J value, the flow rate of 1 slpm(standard liter per meter) for water vapor and N 2 and manufacture’s specifications for the intensity of the Hg Lamp, the amount of OH and H produced were calculated and put as initial values in the model
22
Facsimile model setup Model Type Chemistry with flow and diffusion model Reactions were selected from the reaction database
23
Initial Values OH = 7.4 x 10 11 molecules cm -3 H = 7.4 x 10 11 molecules cm -3 NO = 5 x 10 12 molecules cm -3 (from a 10 ppb cylinder)
24
Results of the model
25
Snapshot graphs
26
Conclusions The data from this model agreed with the experimental data and data from another model in MATLAB
27
Advantages A very fast and very easy model setup for different applications No need to arrange bundle of differential equations Correct model results Model scripts in text files Easy to edit The model wizard adds comments automatically
28
Further Improvement Bunch of errors Using special character ‘*’ in reaction database Hard to debug The more powerful debugging tool The more detailed error messages Weak graphic functions No axis scaling is available Graphs are not compatible with windows cut and paste
29
Further Improvement Hidden limitations The pipe length Maximum values for some parameters Not best-fitted for atmospheric chemistry Photochemical decomposition rates are missing 150 lines to define 20 x 20 grid model Limitations may not be larger enough to define atmospheric chemical reaction system
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.