Presentation is loading. Please wait.

Presentation is loading. Please wait.

*This work was supported by the United States Department of Energy

Similar presentations


Presentation on theme: "*This work was supported by the United States Department of Energy"— Presentation transcript:

1 *This work was supported by the United States Department of Energy
DEUTERIUM RETENTION IN TUNGSTEN EXPOSED TO CARBON-SEEDED DEUTERIUM PLASMA * Igor I. Arkhipov, Vladimir Kh. Alimov, Dmitrii A. Komarov Rion A. Causey*, Robert D. Kolasinski* A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Moscow, Russia *Sandia National Laboratories, Livermore, USA Outline Introduction Experimental Results & Discussion Conclusions *This work was supported by the United States Department of Energy under Contract with Sandia National Laboratories

2 Irradiation conditions
Introduction Irradiation conditions Pdiv, Pa Flux, D/m2s Ei, eV* C, at.% Tsur, K ITER divertor [1] 4 ~1× ≤100 ? 520 & 850 JET [2] ≤20 PISCES-B [3] ~1×1022 100 0.5; 1; 1.4 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤1 [1] G.Federici et al., J. Nucl. Mater (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater (2003) [3] F.C. Sze et.al., J. Nucl. Mater (1999) [4] M.Poon, et al., J. Nucl. Mater (2005) [5] This work

3 Irradiation conditions
Introduction Irradiation conditions Pdiv, Pa Flux, D/m2s Ei, eV* C, at.% Tsur, K ITER divertor [1] 4 ~1× ≤100 ? 520 & 850 JET [2] ≤20 PISCES-B [3] ~1×1022 100 0.5; 1; 1.4 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤1 [1] G.Federici et al., J. Nucl. Mater (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater (2003) [3] F.C. Sze et.al., J. Nucl. Mater (1999) [4] M. Poon, et al., J. Nucl. Mater (2005) [5] This work

4 Material migration in divertor tokamaks
Introduction Material migration in divertor tokamaks Distribution of erosion/deposition areas in the JET divertor ( )* *P.Coad, et al., J. Nucl. Mater (2003) 419

5 Erosion of carbon by deuterium
Introduction Erosion of carbon by deuterium Sputtering yields curves for fusion relevant materials for irradiation by deuterium* (Physical sputtering yields for some ion mass are plotted in the case of W) 100 *G.F. Matthews, J. Nucl. Mater (2005) 1-9

6 Scheme of erosion/re-deposition processes within the divertor*
Introduction Material migration in divertor tokamaks Scheme of erosion/re-deposition processes within the divertor* *G.F. Matthews, J. Nucl. Mater (2005) 1-9

7 Erosion of tungsten by tritium
Introduction Erosion of tungsten by tritium Ion impact energy at the outer divertor target for a completely detached N2 seeded shorts in JET. The effect of ELMs of different sizes is shown* *G.F. Matthews, J. Nucl. Mater (2005) 1-9

8 D retention in C seeded D-plasma exposed W Experimental results
Introduction D retention in C seeded D-plasma exposed W Experimental results Dominant factors: 1. substrate temperature 2. whether carbon is deposited on the W surface There is a carbon-impurity concentration of beginning of C-deposition: 0.75% at 850 K 1% at 750 K Uncontaminated surface: 1. Blisters, bubbles and/or pits are formed 2. D retention decreases with temperature increase C-contaminated surface: 1. a-C:D film or/and W2C layer are formed 2. D retention in C-contaminated W larger than in uncontaminated one The most of deuterium are residing in the carbon films Thin a-C:D film or W2C layer can significantly decrease D-retention in W

9 D retention in C seeded D-plasma exposed W Experimental results
Introduction D retention in C seeded D-plasma exposed W Experimental results Dominant factors: 1. substrate temperature 2. whether carbon is deposited on the W surface There is a carbon-impurity concentration of beginning of C-deposition: 0.75% at 850 K 1% at 750 K Uncontaminated surface: 1. Blisters, bubbles and/or pits are formed 2. D retention decreases with temperature increase C-contaminated surface: 1. a-C:D film or/and W2C layer are formed 2. D retention in C-contaminated W larger than in uncontaminated one The most of deuterium are residing in the carbon films Thin a-C:D film or W2C layer can significantly decrease D-retention in W

10 D retention in C seeded D-plasma exposed W Experimental results
Introduction D retention in C seeded D-plasma exposed W Experimental results Dominant factors: 1. substrate temperature 2. whether carbon is deposited on the W surface There is a carbon-impurity concentration of beginning of C-deposition: 0.75% at 850 K 1% at 750 K Uncontaminated surface: 1. Blisters, bubbles and/or pits are formed 2. D retention decreases with temperature increase C-contaminated surface: 1. a-C:D film or/and W2C layer are formed 2. D retention in C-contaminated W larger than in uncontaminated one The most of deuterium are residing in the carbon films Thin a-C:D film or W2C layer can significantly decrease D-retention in W

11 D retention in C seeded D-plasma exposed W Experimental results
Introduction D retention in C seeded D-plasma exposed W Experimental results Dominant factors: 1. substrate temperature 2. whether carbon is deposited on the W surface There is a carbon-impurity concentration of beginning of C-deposition: 0.75% at 850 K 1% at 750 K Uncontaminated surface: 1. Blisters, bubbles and/or pits are formed 2. D retention decreases with temperature increase C-contaminated surface: 1. a-C:D film or/and W2C layer are formed 2. D retention in C-contaminated W larger than in uncontaminated one The most of deuterium are residing in the carbon films Thin a-C:D film or W2C layer can significantly decrease D-retention in W

12 Erosion of tungsten by carbon
Introduction Erosion of tungsten by carbon Sputtering yields curves for fusion relevant materials for irradiation by deuterium* (Physical sputtering yields for some ion mass are plotted in the case of W) 100 *G.F. Matthews, J. Nucl. Mater (2005) 1-9

13 W erosion as function of Te and C impurity concentration*
Introduction Erosion of tungsten by carbon W erosion as function of Te and C impurity concentration* *K. Schmid, J. Roth, J. Nucl. Mater (2003)

14 Partially contaminated surface in C-seeded D-plasma
Introduction In this work: Partially contaminated surface in C-seeded D-plasma

15 Top view of magnetron cathode surface
Experimental Top view of magnetron cathode surface (6×8×0.5 mm3) Ta mask

16 Irradiation conditions
Experimental Irradiation conditions Pdiv, Pa Flux, D/m2s Ei, eV* C, at.% Tsur, K ITER divertor [1] 4 ~1× ≤100 ? 520 & 850 JET [2] ≤20 PISCES-B [3] ~1×1022 100 0.5; 1; 1.4 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤4 [1] G.Federici et al., J. Nucl. Mater (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater (2003) [3] F.C. Sze et.al., J. Nucl. Mater (1999) [4] M.Poon, et al., J. Nucl. Mater (2005) [5] This work

17 Irradiation conditions
Experimental Irradiation conditions Pdiv, Pa Flux, D/m2s Ei*, eV At.% C Tsurface, K ITER [1] 4 ~1× ≤100 ? 520 & 850 JET [2] ≤20 PISCES-B [3] ~2×1022 100 0.5; 1; 1.4 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤4 *Ei≈ZUsheath + 2Ti ≈ Te(3Z+1), Usheath≈3Te/e0 Ti≈Te/2 Ei- ion impact energy Z- charge state of the impacting ion Usheath- sheath potential Te& Ti – temperatures of electrons and ions [1] G.Federici et al., J. Nucl. Mater (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater (2003) [3] F.C. Sze et.al., J. Nucl. Mater (1999) [4] M.Poon, et al., J. Nucl. Mater (2005) [5] This work

18 Irradiation conditions
Experimental Irradiation conditions Pdiv, Pa Flux, D/m2s Ei, eV At.% C Tsurface, K ITER [1] 4 ~1× ≤100 ? 520 & 850 JET [2] ≤20 PISCES-B [3] ~1×1022 100 0.5; 1; 1.4 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤4 [1] G.Federici et al., J. Nucl. Mater (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater (2003) [3] F.C. Sze et.al., J. Nucl. Mater (1999) [4] M.Poon, et al., J. Nucl. Mater (2005) [5] This work

19 W erosion as function of Te and C impurity concentration*
Introduction Erosion of tungsten by carbon W erosion as function of Te and C impurity concentration* *K. Schmid, J. Roth, J. Nucl. Mater (2003)

20 Experimental conditions
D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, nm/sec 200 1800 1× 1019 2× 1024 ≤1 nm/sec Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - 1× 10-9 * No limits for diffusion 1 C+→W 0.1 1× ** Thin C-W mixed layer * T=770 K **T=1030 K [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater (2003)

21 Erosion of tungsten Experimental
Estimation: V erosion=1.5-2 μm/30 min ~1 nm/s ~6×1019 at.W/m2s Initial surface Closed area Eroded surface Plasma-impact area Interference fringes (Linnik micro-interferometer)

22 Erosion of tungsten by carbon
Experimental Erosion of tungsten by carbon Sputtering yields curves for fusion relevant materials for irradiation by deuterium* (Physical sputtering yields for some ion mass are plotted in the case of W) *G.F. Matthews, J. Nucl. Mater (2005) 1-9

23 Experimental conditions
D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2s 200 1800 1× 1019 2× 1024 ≤6×1019 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - 1× 10-9 * No limits for diffusion 1 C+→W 0.1 1× ** Thin C-W mixed layer * T=770 K **T=1030 K 1%C in plasma: 1018 C/m2s→ 1017 W/m2s [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater (2003)

24 The threshold energies of sputtering
Experimental The threshold energies of sputtering Irradiation T, K Eth, eV Kerosion at Ei= 400 eV C+, N+, O+ →W 293 ~35 ~ 0.1 Ta+ →W ~2 D2+→W ≤0.0001 D2+→WO 65 D2+→WC 150

25 DEUTERIUM RETENTION IN TUNGSTEN AT HIGH LEVEL OF SURFACE EROSION
Experimental DEUTERIUM RETENTION IN TUNGSTEN AT HIGH LEVEL OF SURFACE EROSION

26 Experimental conditions
D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2sec Temperature, K 200 1800 1× 1019 2× 1024 ~6×1019 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - ~ 1× 10-9 * No limits for diffusion 1 C+→W 0.1 ~ 1× ** Thin C-W mixed layer * T= K **T=1030 K [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater (2003)

27 Diffusion coefficient for C in a wide concentration range for C in W*
Introduction Diffusion coefficient for C in a wide concentration range for C in W* *K. Schmid, J. Roth, J. Nucl. Mater (2003)

28 Experimental conditions
D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2sec Temperature, K 200 1800 1× 1019 2× 1024 ~6×1019 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - ~ 1× 10-9 * No limits for diffusion 1 C+→W 0.1 ~ 1× ** Thin C-W mixed layer * T= K **T=1030 K [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater (2003)

29 Experimental conditions
D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2sec Temperature, K 200 1800 1× 1019 2× 1024 ~6×1019 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - ~ 1× 10-9 * No limits for diffusion 1 C+→W 0.1 ~ 1× ** Thin C-W mixed layer * T= K **T=1030 K [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater (2003)

30 H diffusivity vs temperature for W
Experimental H diffusivity vs temperature for W 773 K E. Serra, G. Benamati, O.V. Ogorodnikova, J. Nucl. Mater. 255 (1998)

31 H diffusivity vs temperature for W
Experimental H diffusivity vs temperature for W 773 K R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388

32 H diffusivity vs temperature for W
Experimental H diffusivity vs temperature for W 773 K A.P. Zakharov, V.M. Sharapov, E.I. Evko, Soviet Mater. Sci. 9 (1973) 149

33 Experimental conditions
D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2sec Temperature, K 200 1800 1× 1019 2× 1024 ~6×1019 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - ~ 1× 10-9 * No limits for diffusion 1 C+→W 0.1 ~ 1× ** Thin C-W mixed layer * T= K **T=1030 K Kdiffusion ~ 1× 10-9 m2s-1 →h=(Dt)1/2~ 1mm [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater (2003)

34 Methods of the analysis
Experimental Methods of the analysis C/D-plasma irradiation: planar DC magnetron Eions (D2+; C+; N+, O+, Ta+)= 400 eV Flux=1×1019 D/m2s, 30 min Mechanically & electrochemically polished Hot-rolled tungsten foil (99.0 at.%) Size = 6×8×0.5 mm3 Profiles & chemical state of impurities: X-ray Photoelectron Spectroscopy (XPS) Depth profiles of C, O, W 3 kev Ar+, 2×2 mm2, 0.4 μm Deuterium profiles: Nuclear Reaction Analysis (NRA): μm: D(3He,α)H reaction μm: D(3He,p)4He reaction Deuterium retention: Thermal Desorption Spectroscopy (TDS) D2 & HD molecules were detected by QMS Temperature range: K Heating rate = 3.2 K/s

35 Results & Discussion NRA & TDS data m 6

36 Results & Discussion NRA data 3

37 Results & Discussion XPS data (3 keV Ar at fluence=1×1019 Ar/m2 )

38 Results & Discussion NRA data 3

39 Blistering in the temperature range 363-653 K
Results & Discussion Blistering in the temperature range K Pre-TDS; T=563 K at fluence=2× 1024 D/m2

40 Results & Discussion TDS data

41 Results & Discussion TDS data T1= K T2= K

42 Results & Discussion TDS modeling: contributions from 1.4 eV traps and blisters (TMAP7) at 563 K

43 Three types of traps can explain our TDS data
Near-surface layer (≤ 0.5 m): 1.4 eV traps= one D in vacancy 2. Sub-surface layer (≤ 7 m): eV= D chemisorption on blister/bubble wall + D2 molecules inside 3. Bulk (up to 1 mm): eV traps= D chemisorption on inner walls of small cavity and voids

44 Fitting of TDS data are in progress

45 Results & Discussion NRA & TDS data m Bulk trapping !

46 General experimental results
Results & Discussion General experimental results Strong W sputtering Blistering Enhanced D retention NRA ≈ TDS from 363 to 563 K NRA<<TDS from 563 to 773 K

47 Conclusions General conclusions Blistering & enhanced D retention even at strong W surface sputtering are revealed Irradiation temperature of K corresponds to transition from a near/sub-surface to a bulk D trapping in polycrystalline W foils Carbon influence: enhanced W erosion; W2C barrier layer formation & increased D retention

48 Conclusions General conclusions Blistering & enhanced D retention even at strong W surface sputtering are revealed Irradiation temperature of K corresponds to transition from a near-surface to a bulk D trapping in polycrystalline W Carbon influence: enhanced W erosion; W2C barrier layer formation & enhanced D retention

49 Conclusions General conclusions Blistering & enhanced D retention even at strong W surface sputtering are revealed Irradiation temperature of K corresponds to transition from a near-surface to a bulk D trapping in polycrystalline W Carbon influence: enhanced W erosion; W2C barrier layer formation & enhanced bulk D retention

50 Scheme of plasma-surface interaction
No erosion D-C plasma D  stop diffusion & retention 4 nm W a-C:H film Carbon-modified layer (W2C, WC)

51 Scheme of plasma-surface interaction
Erosion rate  1 nm/s D-C plasma  no limits for diffusion  high retention level in bulk D 2 m 1 nm W a-C:H film Carbon-modified layer (W2C, WC)

52 To be or not to be for D retention in W strongly depends on irradiation parameters and surface conditions

53 Thank you for attention


Download ppt "*This work was supported by the United States Department of Energy"

Similar presentations


Ads by Google