Download presentation
Presentation is loading. Please wait.
Published byPatricia Rosalyn Heath Modified over 8 years ago
1
Ischemia-reperfusion injury (IRI) Chapter 10 Department of Pathophysiology, Anhui Medical University Yuxia Zhang
2
Concepts: IRI, oxygen/calcium/pH paradox Causes and conditions of IRI Mechanisms of IRI injury Metabolic and functional alterations Prevention and treatment principle Contents
3
Introduction at 1960 , Jenning:MI/R I 1968, brain ; 1972, kindey ; 1978, lung ; 1981, intestinal ; and so on Clinical phenomenon: bypass surgery,shock treatment,organ transplantation, thrombolysis, recovery of hearts after ischemic arrest , Percutanueous Transluminal Coronary Angioplasty (PTCA) I/R I is a common phenomenon paradoxical phenomenon
4
1.Concept IRI the reestablishment of blood flow after prolonged ischemia aggravates the tissue damage.
5
pH paradox ischemia acidosis, disorder of function and metbolism on cell severe IRI pH paradox calcium paradox pre-perfuse rat heart with no calcium perfusion for 2min perfuse calcium perfusion, cell release enzyme myofibril over-constract, electron signals abnormal , calcium paradox
6
Oxygen paradox Hypoxia liquid perfuse organ or culture without oxygen injury restore perfusion severe injury
7
2. Cause of ischemia-reperfusion injury and affecting factor Recover from cardiac arrest Organ transplantation Lysing thrombi ( 1 ) cause
8
( 2 ) Affecting factor Duration of ischemia small animals 5-10min: arrhythmia 20-30min: ventricular tremor big animals 20-40min: reversible injury 40-60min:irreversible injury diversity between small and big animal
9
Branch circulation : chronic O 2 consumption rate [K + ], [Mg 2+ ] condition of reperfusion T, pressure,pH,Na +,Ca 2+ protection T, pressure,Na +,Ca 2+ damage
10
3. Mechanisms of IRI role of oxygen free radical calcium overload role of leukocyte
11
(1)Role of oxygen free radical concept and classification of free radical Free radical: Any atom or molecule possessing unpaired electrons Nitric oxide (NO. )Peroxynitrite ( ONOO - ) Cl 、 CH 3 、 NO Free radicals Oxygen free radicals(OFR) Superoxide anion (O 2.- ), Hydroxyl radical (OH. ) : Lipid peroxide radical ˉ : L LO LOO L LO LOO Others : Reactive oxygen species (ROS) : O 2 OH 1 O 2 H 2 O 2
12
formation of oxygen free radical nature oxidation of Hb, Cyt C O 2 O ‾∙ 2 H 2 O 2 OH ∙ H 2 O H 2 O oxidation of enzyme :XO Mitochondria: normal : O 2 +4e+4H + → H 2 O+ATP abnormal :O 2 +e → O · - 2 +e +2H + → H 2 0 2 +e+H + → OH · +e+H + → H 2 0 O ‾∙ 2
13
SOD O · - 2 + O · - 2 +2H + H 2 O 2 +O 2 O · - 2 +H 2 O 2 OH · + OH · +O 2 Fenton Haber-Weiss : SOD Fe 2+ Fe 3+ O · - 2 H 2 O 2 OH · + OH - Production of OH·
14
Mechanism of increased OFR generation Xanthine oxidase pathway : XO↑ Xanthine oxidase pathway : XO↑ normal : Endothelial cell , XO 10% , XD 90% OH OH xanthine + O 2 +H 2 O 2 – hypoxanthine ischemia – reperfusion Uric acid+O 2 +H 2 O 2 ATP ADP AMP XD Ca 2+ XO O2O2 O2O2
15
The effects of leucocyte : respiratory burst The effects of leucocyte : respiratory burst NADPH oxidase NADPH +2O 2 2O· - 2 +NADP + +H + NADH+O 2 H 2 O 2 +NAD + + 2H + NADH oxidase reperfusion : oxygen consumption of infiltrated WBC:↑70-90% O2
16
Disfunction of mitochondria normal: O 2 +4e+4H + →H 2 O+ATP abnormal :O 2 +e→ O· - 2 +e +2H + →H 2 0 2 +e+H + →OH· +e+H + →H 2 0 catecholamine autooxidation AD adsenale + O· - 2 MAO
17
Damage of oxygen-derived free radicals membrane lipid peroxidation cellular membrane lipid peroxidation permeability ↑ fluidity ↓ [Ca 2+ ] i calciumoverload [Na + ] i, [Ca 2+ ] i lipid cross-linked inhibition of Na + -pump and Ca 2+ -pump
18
membrane lipid peroxidation phospholipase C phospholipase D PGs, LTs TXA2 damage of mitochondria membrane ATP
19
enzymes : channels: inhibition of protein function destruction of nuclear acid base hydroxylation 、 breakdown of DNA
20
HEALTHY CELL (left) | FREE RADICAL DAMAGE (right)
21
The abnormal increase of intracellular calcium which causes cell injury (2) Calcium overload Concept Metabolic pathway of [Ca 2+ ]i Ca 2+ pump in the cell membrane; Na + -Ca 2+ exchange pump in the cell membrane ; Ca 2+ pump in the mito. membrane ; Ca 2+ pump in endoplasmic reticulum
22
K+K+ Na + 3Na + Ca 2+ ATP↓ Na + ↑ Ca 2+ ↑ Ischemia mechanism of calcium overload Reperfusion Abnormal Na + -Ca 2+ exchange direct activation : intracellular sodium↑
23
indirect activation ( 1 ): intracellular 【 H + 】 ↑ 3Na + Ca 2+ Na + K+K+ H+H+ Reperfusion H + ↓ H+↑H+↑ Na + ↑ Ca 2+ ↑ Ischemia H + ↑
24
indirect activation ( 2 ): activation of PKC ischemia NE α 1 – receptor NE SR myofilament
25
catecholamine β – receptor [Ca 2+ ] i β Cellular membrane Ca 2+ ↑ L Ca 2+ - channel
26
Damage of mitochondria damage of cellular membrane: injury of biomembrane [Ca 2+ ] ↑ ATP Ca 2+ - ATPase calcium overload Damage of mitochondria and sarcoplasmic Damage of Sarcopasmic
27
Pathogenesis of calcium overload Damage mitochondria : ATP ↓ promote OFR formation : damege aggravation Stimulating the phospholipase : injury of membrane cell and cell organ mitochondrial dysfunction
29
(3) role of leukocyte activation,margination and aggregation of PMNs after reperfusion adhesion molecule ; chemotatic factor; mediators of inflammation
30
Neutrophil activation ROSInflammatory mediators Injury of Micro-vessels No-reflow phenomenon Cell injury Role of Neutrophil Reperfusion
31
Ischemia-reperfusion injury of heart 3. Changes of function and metabolism Changes in cardiac function Decrease of myocardial contractility : myocardial stunning Eperfusion arrhythmia Changes in myocardial metabolism: ATP↓, ADP↑, AMP↑ Changes in myocardial structure: cell edma , contraction band , apoptosis
32
Heart Injury Ischemia-reperfusion injury Calcium overload Free radical Destroy of contractile protein Myocardial stunning Ca++ K+ Na+ ArrhythmiaCell death
33
Ischemia-reperfusion injury of brain ATP Na + -pump cellular edema Hypoxia of cells cellular acidosis Excitability transmitter inhibitive transmitter cAMP↑ cGMP↓ activate free fatty acid ↑ lipid peroxidation ↑ Hisconstructure:Edema, necrosis
34
4. Principles of prevention and treatment (1) restoring normal perfusion of tissue in time low temperature; low pressure; low flow; low natrium(sodium); low pH; low calcium
35
(2) improve the metabolism of the tissues ATP; cytochrome C; (3) sweep away free radical: VitE: lose e FR FR (lipid) VitC: clear OH ∙ (water) β-cartenoids: clear 1 O 2 GSH
36
enzyme scavenger : 2 O ‾∙ 2 +2H + H 2 O + O 2 H 2 O 2 H 2 O+ O 2 (4) relieve of calcium overload Ca 2+ ion blok agent SOD CAT
37
5. CoQ Inhibit L (lipid free radical) 2L+ CoQ 2LH+ CoQ protein enzyme inhibitor: ulinastatin
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.