Download presentation
Presentation is loading. Please wait.
Published byLeona Houston Modified over 9 years ago
1
1 Syntax Specification (Sections 2.1-2.2.1) CSCI 431 Programming Languages Fall 2003 A modification of slides developed by Felix Hernandez-Campos at UNC Chapel Hill
2
2 Phases of Compilation
3
3 Syntax Analysis Syntax:Syntax: –Webster’s definition: 1 a : the way in which linguistic elements (as words) are put together to form constituents (as phrases or clauses) The syntax of a programming languageThe syntax of a programming language –Describes its form »i.e. Organization of tokens –Formal notation »Context Free Grammars (CFGs)
4
4 Review: Formal definition of tokens A set of tokens is a set of strings over an alphabetA set of tokens is a set of strings over an alphabet –{read, write, +, -, *, /, :=, 1, 2, …, 10, …, 3.45e-3, …} A set of tokens is a regular set that can be defined by comprehension using a regular expressionA set of tokens is a regular set that can be defined by comprehension using a regular expression For every regular set, there is a deterministic finite automaton (DFA) that can recognize itFor every regular set, there is a deterministic finite automaton (DFA) that can recognize it –i.e. determine whether a string belongs to the set or not –Scanners extract tokens from source code in the same way DFAs determine membership
5
5 Review: Regular Expressions A regular expression (RE) is:A regular expression (RE) is: –A single character –The empty string, –The concatenation of two regular expressions »Notation: RE 1 RE 2 (i.e. RE 1 followed by RE 2 ) –The union of two regular expressions »Notation: RE 1 | RE 2 –The closure of a regular expression »Notation: RE* »* is known as the Kleene star »* represents the concatenation of 0 or more strings
6
6 Review: Token Definition Example Numeric literals in PascalNumeric literals in Pascal –Definition of the token unsigned_number digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 unsigned_integer digit digit* unsigned_number unsigned_integer ( (. unsigned_integer ) | ) ( ( e ( + | – | ) unsigned_integer ) | ) Recursion is not allowed!Recursion is not allowed!
7
7 Exercise digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 unsigned_integer digit digit* unsigned_number unsigned_integer ( (. unsigned_integer ) | ) ( ( e ( + | – | ) unsigned_integer ) | ) Regular expression forRegular expression for –Decimal numbers number …
8
8 Exercise digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 unsigned_integer digit digit* unsigned_number unsigned_integer ( (. unsigned_integer ) | ) ( ( e ( + | – | ) unsigned_integer ) | ) Regular expression forRegular expression for –Decimal numbers number ( + | – | ) unsigned_integer ( ( unsigned_integer ) | )
9
9 Exercise digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 unsigned_integer digit digit* unsigned_number unsigned_integer ( (. unsigned_integer ) | ) ( ( e ( + | – | ) unsigned_integer ) | ) Regular expression forRegular expression for –Identifiers identifier …
10
10 Exercise digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 unsigned_integer digit digit* unsigned_number unsigned_integer ( (. unsigned_integer ) | ) ( ( e ( + | – | ) unsigned_integer ) | ) Regular expression forRegular expression for –Identifiers identifier letter ( letter | digit | )* letter a | b | c | … | z
11
11 Context Free Grammars CFGsCFGs –Add recursion to regular expressions »Nested constructions –Notation expression identifier | number | - expression | ( expression ) | ( expression ) | expression operator expression | expression operator expression operator + | - | * | / »Terminal symbols »Non-terminal symbols »Production rule (i.e. substitution rule) terminal symbol terminal and non-terminal symbols
12
12 Backus-Naur Form Backus-Naur Form (BNF)Backus-Naur Form (BNF) –Equivalent to CFGs in power –CFG expression identifier | number | - expression | ( expression ) | ( expression ) | expression operator expression | expression operator expression operator + | - | * | / –BNF (really EBNF) expression identifier | number | - expression | ( expression ) | ( expression ) | expression operator expression | expression operator expression operator + | - | * | /
13
13 Extended Backus-Naur Form Extended Backus-Naur Form (EBNF)Extended Backus-Naur Form (EBNF) –Adds some convenient symbols »Union| »Kleene star* »Meta-level parentheses( ) –It has the same expressive power
14
14 Extended Backus-Naur Form Extended Backus-Naur Form (EBNF)Extended Backus-Naur Form (EBNF) –It has the same expressive power BNF digit 0 digit 1 … digit 9 unsigned_integer digit unsigned_integer digit unsigned_integer EBNF digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 unsigned_integer digit digit *
15
15 Derivations A derivation shows how to generate a syntactically valid stringA derivation shows how to generate a syntactically valid string –Given a CFG –Example: »CFG expression identifier | number | - expression | ( expression ) | ( expression ) | expression operator expression | expression operator expression operator + | - | * | / »Derivation of slope * x + intercept
16
16 Derivation Example Derivation of slope * x + interceptDerivation of slope * x + intercept expression expression operator expression expression operator intercept expression operator intercept expression + intercept expression + intercept expression operator expression + intercept expression operator expression + intercept expression operator x + intercept expression operator x + intercept expression * x + intercept expression * x + intercept slope * x + intercept slope * x + intercept expression * slope * x + intercept
17
17 Parse Trees A parse is graphical representation of a derivationA parse is graphical representation of a derivation ExampleExample
18
18 Ambiguous Grammars Alternative parse treeAlternative parse tree –same expression –same grammar This grammar is ambiguousThis grammar is ambiguous
19
19 Designing unambiguous grammars Specify more grammatical structureSpecify more grammatical structure –In our example, left associativity and operator precedence »10 – 4 – 3 means (10 – 4) – 3 »3 + 4 * 5 means 3 + (4 * 5)
20
20 Example Parse tree for 3 + 4 * 5Parse tree for 3 + 4 * 5 Exercise: parse tree forExercise: parse tree for - 10 / 5 * 8 – 4 - 5 - 10 / 5 * 8 – 4 - 5
21
21 Java Language Specification Available on-lineAvailable on-line –http://java.sun.com/docs/books/jls/second_edition/html/j.tit le.doc.html http://java.sun.com/docs/books/jls/second_edition/html/j.tit le.doc.htmlhttp://java.sun.com/docs/books/jls/second_edition/html/j.tit le.doc.html ExamplesExamples –Comments: http://java.sun.com/docs/books/jls/second_edition/html/lex ical.doc.html#48125 http://java.sun.com/docs/books/jls/second_edition/html/lex ical.doc.html#48125 http://java.sun.com/docs/books/jls/second_edition/html/lex ical.doc.html#48125 –Multiplicative Operators: http://java.sun.com/docs/books/jls/second_edition/html/ex pressions.doc.html#239829 http://java.sun.com/docs/books/jls/second_edition/html/ex pressions.doc.html#239829 http://java.sun.com/docs/books/jls/second_edition/html/ex pressions.doc.html#239829 –Unary Operators: http://java.sun.com/docs/books/jls/second_edition/html/ex pressions.doc.html#4990 http://java.sun.com/docs/books/jls/second_edition/html/ex pressions.doc.html#4990 http://java.sun.com/docs/books/jls/second_edition/html/ex pressions.doc.html#4990
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.