Download presentation
Presentation is loading. Please wait.
Published byArthur Hampton Modified over 9 years ago
1
fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012
2
fabrizio.rossi@cern.ch 2 Updates on thermal tests EXPERIMENTAL PROGRAM FOR THERMAL TESTS HEATING No active heating in RF structures HEATING No active heating in RF structures COOLING No active cooling in RF structures COOLING No active cooling in RF structures MEASUREMENTS 1.Temperature 2.Alignment Laser tracker Romer arm WPS Micro-Triangulation system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker Romer arm WPS Micro-Triangulation system STEP 1 – Heating environment ENVIRONMENT T amb = 20 - 40 °C in steady-state conditions and by steps of 5 °C ENVIRONMENT T amb = 20 - 40 °C in steady-state conditions and by steps of 5 °C HEATING PETS by steps up to 110 W/unit HEATING PETS by steps up to 110 W/unit COOLING PETS < max calculated T COOLING PETS < max calculated T MEASUREMENTS 1.Temperature 2.Volumetric flow rate 3.Alignment Laser tracker Romer arm WPS Micro-Triangulation system MEASUREMENTS 1.Temperature 2.Volumetric flow rate 3.Alignment Laser tracker Romer arm WPS Micro-Triangulation system STEP 2 – Heating only PETS ENVIRONMENT T amb = 20 °C in steady-state conditions ENVIRONMENT T amb = 20 °C in steady-state conditions HEATING AS by steps up to 400 W/unit HEATING AS by steps up to 400 W/unit COOLING AS < max calculated T COOLING AS < max calculated T MEASUREMENTS 1.Temperature 2.Volumetric flow rate 3.Alignment Laser tracker Romer arm WPS Micro-Triangulation system MEASUREMENTS 1.Temperature 2.Volumetric flow rate 3.Alignment Laser tracker Romer arm WPS Micro-Triangulation system STEP 3 – Heating only AS ENVIRONMENT T amb = 20 °C in steady-state conditions ENVIRONMENT T amb = 20 °C in steady-state conditions HEATING AS + PETS + DBQ by steps up to max power/unit HEATING AS + PETS + DBQ by steps up to max power/unit COOLING AS + PETS + DBQ < max calculated T COOLING AS + PETS + DBQ < max calculated T MEASUREMENTS 1.Temperature 2.Volumetric flow rate 3.Alignment Laser tracker Romer arm WPS Micro-Triangulation system MEASUREMENTS 1.Temperature 2.Volumetric flow rate 3.Alignment Laser tracker Romer arm WPS Micro-Triangulation system STEP 4 – Heating all module ENVIRONMENT T amb = 20 - 40 °C in steady-state conditions and by steps of 5 °C ENVIRONMENT T amb = 20 - 40 °C in steady-state conditions and by steps of 5 °C MEASUREMENTS a.Comparison between laser tracker and WPS measurements (no movements of girders) b.Alignment tests by moving girders via actuators and comparison between laser tracker and WPS measurements MEASUREMENTS a.Comparison between laser tracker and WPS measurements (no movements of girders) b.Alignment tests by moving girders via actuators and comparison between laser tracker and WPS measurements STEP 0 – Alignment tests ENVIRONMENT T amb = 20 & 40 °C ENVIRONMENT T amb = 20 & 40 °C ALL THE TESTS ARE PERFORMED WITH NO VACUUM
3
fabrizio.rossi@cern.ch 3 Updates on thermal tests Topics and updates concerning the status of: 1.CLIC prototype module type 0 2.Laboratory environment (air conditioning, ventilation, etc. ) 3.Heating system (heaters, temperature sensors, etc.) 4.Cooling system (water supply, inlet/outlet cooling circuits, control valves, etc.) 5.Numerical simulations
4
fabrizio.rossi@cern.ch 4 Updates on thermal tests 1. CLIC prototype module type 0 First module type 0 ready by the end of September (RF network, vacuum network, compact load, cooling system inside module, etc. )
5
fabrizio.rossi@cern.ch 5 Updates on thermal tests 2. LABORATORY ENVIRONMENT: air conditioning and ventilation system AIR COOLING T = 20 - 40 °C v = 0.2 - 0.8 m/s AIR CIRCULATION (v = 4 m/s) Air conditioning and ventilation system to reproduce thermal conditions inside CLIC tunnel Installation: end of October 2012 Cupboards inside and outside experimental area are being moved to bld. 162
6
fabrizio.rossi@cern.ch 6 Updates on thermal tests 3. HEATING SYSTEM: heaters Experimental conditions to be reproduced: G. Riddone, A. Samoshkin, CLIC Test Module meeting 25.07.2011 GROUP HEATER Q.TYS/NDimensions (mm)VoltageP max (W)I max (A)Operating condition 8 AS10680/TC31-80/6065W240V/SFØ8 x 2032 240V AC 609525.450% 2 PETS unit1S/N 0680/TS44-80/2175W240V/SFØ11.17 x 203221759.120% 2 DBQ8+8=16CSS-303200_220vØ12.7 x 76320013.39% TOTAL1147047.835% DBQ heaters AS + PETS heaters
7
fabrizio.rossi@cern.ch 7 Updates on thermal tests 3. HEATING SYSTEM: temperature sensors solid state relay heaters IL Hardware thermal interlock (2 for AS, 1 for each PETS and DBQ) max. temp. limit: 50 °C All temperature sensors are currently stored in the lab 1 DOF for each heating sub- system (AS, PETS and DBQ) temperature sensors PWM signal for controlling the heaters T = 10 s Duty cycle (%)
8
fabrizio.rossi@cern.ch 8 Updates on thermal tests 3. HEATING SYSTEM: temperature sensors 2 m 1.2 m 1 m 1.3 m 5 thermocouples for each section o Thermocouple type T (± 0.5 °C) 15 thermocouples in total Continuous acquisition during tests NI 9214 16-Channel Isothermal Thermocouple Input Module
9
fabrizio.rossi@cern.ch 9 Updates on thermal tests 3. HEATING SYSTEM: software Software interface Panel for control valves Modifications to the previous configuration are being integrated in the software
10
fabrizio.rossi@cern.ch 10 Updates on thermal tests 3. HEATING SYSTEM: status Heaters: DELIVERED RTD sensors: DELIVERED NI hardware: DELIVERED Thermocouples + DAQ card: mid of September Electric scheme (IL, SSR, etc.): end of September
11
fabrizio.rossi@cern.ch 11 Updates on thermal tests 4. COOLING SYSTEM Demineralized water Nominal volumetric flow rate: 0.36 m 3 /h Water inlet temperature: 25 °C Water outlet temperature: ~45 °C Max. pressure allowed: 5 bar
12
fabrizio.rossi@cern.ch 12 Updates on thermal tests 4. COOLING SYSTEM: AS TS7 TS1 TS2 TS6 TS4
13
fabrizio.rossi@cern.ch 13 Updates on thermal tests 4. COOLING SYSTEM: PETS TS17 TS22 TS23 TS24 TS25 TS26
14
fabrizio.rossi@cern.ch 14 Updates on thermal tests 4. COOLING SYSTEM: hydraulic circuit Water pump Heat exchanger Temperature regulator Inlet/outlet port Water tank POWER SOCKET Max. 16 A POWER SOCKET Max. 32 A air cooling safety valves control valves flow (+temperature) transducer PRV pressure transducer inlet/outlet hydraulic circuit
15
fabrizio.rossi@cern.ch 15 Updates on thermal tests 4. COOLING SYSTEM: status Water supply: DELIVERED Hydraulic parts (pipes, elbows, etc. ): DELIVERED Control valves: DELIVERED Measuring devices (pressure transducer, flow rate transducer, etc. ): DELIVERED PRV: DELIVERED Safety valves: end of September Supporting frames (beams, ladders, etc. ): end of September Electric scheme: end of September
16
fabrizio.rossi@cern.ch 16 Updates on thermal tests FINAL LAYOUT AS heater PETS heater DBQ heaters Temperature sensors (q.ty 29) POWER SOCKET Max. 63 A POWER SOCKET Max. 63 A Improvement of current electric network of Lab completed POWER SOCKET Max. 16 A POWER SOCKET Max. 32 A Supporting system for: Control valves (q.ty 7) Flow transducer (q.ty 1) Pressure sensor (q.ty 1) Electric scheme for control valves, heaters, temperature sensors, etc. (J. Blanc) CUPBOARD for: NI cDAQ-9178 8 slots (q.ty 1) NI cDAQ-9174 4 slots (q.ty 1) 24 V supply Digital control electronics for proportional valves (q.ty 7) SSR
17
fabrizio.rossi@cern.ch 17 Updates on thermal tests SCHEDULE End of September: o 1st TM0 ready End of October: o Installation of air conditioning and ventilation system o Preliminary tests for heaters, cooling system and data acquisition process Beginning of November: o Preliminary thermal tests
18
fabrizio.rossi@cern.ch 18 Updates on thermal tests 5. NUMERICAL SIMULATIONS: thermo-mechanical modelling Deformed shape of prototype module type 0 due to applied thermal RF loads (values in µm) Displacements [ m] (location and load type) Prototype type 0 MB (RF load)183 DB (RF load)47 MB (vacuum load)30 DB (vacuum load)131 MB (gravity load)27 DB (gravity load)40 Resulting displacements on the DB and MB lines due to thermal, vacuum and gravity loads Temperature [°C]Prototype type 0 Max temp. of module43 Water output temp. MB35 Water output temp. DB30 Resulting temperatures inside the modules R. Raatikainen (SAS = 820 W, PETS unit = 78 W, T amb = 25 °C)
19
fabrizio.rossi@cern.ch 19 Updates on thermal tests 5. NUMERICAL SIMULATIONS: hydraulic circuit modelling SAS CLs SAS CLs SAS CLs SAS CLs PETS unit WG1 WG2WG3 WG4 CV1 PUMP PRV CV2 CV7 CV3 CV4 CV5 Q 11 Q 12 Q 13 Q 14 Q2Q2 Q Q = total flow rate [m 3 /h] Q 1i = flow rate for SAS [m 3 /h] Q 2 = flow rate for PETS unit [m 3 /h] P PRV = set pressure for PRV [bar] CV = control valve PUMP = water pump J i = pipe distributed energy loss (L i = pipe length) P PRV SAS = super accelerating structure CL = compact load WG = waveguide L 11, J 11 L 12, J 12 L 13, J 13 L 14, J 14 L 2, J 2 EDMS 1233096
20
fabrizio.rossi@cern.ch 20 Updates on thermal tests 5. NUMERICAL SIMULATIONS: hydraulic circuit modelling #BURKERT REFERENCEk Vs [m 3 /h]DN [mm] CV1 Type 1 (2835, n. 175996) 0.122 CV2 CV3 CV4 CV5 Type 2 (2833, n. 175869) 0.041.2 CV7 Type 4 (2835, n. 176006) 0.454 k Vs value: Flow rate value for water, measured at +20 °C and 1 bar pressure differential over a fully opened valve CHARACTERISTICS OF PROPORTIONAL VALVES k V = flow coefficient for a certain opening position of control valve V = input voltage signal for control valve [0 - 10 volt] Δp = pressure drop across control valve for a certain opening position [bar] ρ = water density [kg/dm 3 ]
21
fabrizio.rossi@cern.ch 21 Updates on thermal tests 5. NUMERICAL SIMULATIONS: hydraulic circuit modelling CV 1,..7 (% open)p PRV [bar]*Q [m 3 /h]Q 1i [m 3 /h]Δp CV1i [bar]Q 2 [m 3 /h]Δp CV2 [bar]Δp CV7 [bar] 50%3.250.310.0711.390.0241.391.85 75%1.450.310.0710.620.0240.620.82 100%0.820.310.0710.350.0240.350.46 *all pressure values are relative to the atmospheric pressure Independent variables Dependent variables (calculated)
22
fabrizio.rossi@cern.ch 22 Updates on thermal tests 5. NUMERICAL SIMULATIONS: CFD model of air conditioning and ventilation system Total RF power per module: 4 kW Number of modules: 4 Assumptions per module: o Heat dissipation to cooling system: 80 % (3200 W) o Heat dissipation to air: 20 % (800 W)
23
fabrizio.rossi@cern.ch 23 Updates on thermal tests 5. NUMERICAL SIMULATIONS: CFD model of air conditioning and ventilation system 2 m 4.6 m 14.6 m 2.3 m Vertical cutview Lab volume TM0 (2 x 1 x 1 m) v x = 0.5 m/s T i = 20 °C v y = 0 (no-penetration condition) v x = 0.5 m/s v z = 0 (no-penetration condition) y z x Initial temperature = 25 °C Time period = 300 s
24
fabrizio.rossi@cern.ch 24 Updates on thermal tests 5. NUMERICAL SIMULATIONS: CFD model of air conditioning and ventilation system T = 23 °C T = 20 °C T i = 20 °C v x = 0.5 m/s Q = 800 W
25
fabrizio.rossi@cern.ch 25 Updates on thermal tests 5. NUMERICAL SIMULATIONS: CFD model of air conditioning and ventilation system T i = 30 °C v x = 0.7 m/s Q = 1600 W T = 35 °C T = 30 °C
26
fabrizio.rossi@cern.ch 26 Updates on thermal tests CONCLUSIONS: THERMAL TESTS STRATEGY NAMELAB CONFIGURATION PARAMETERS HeatingCoolingVacuum TT1TM0VVX TT2TM0 + TM0VVX TT3TM1 + TM0VVV TT2 TT3
27
fabrizio.rossi@cern.ch 27 Updates on thermal tests THERMAL TESTS: people Roberto Mondello Experimental tests Ioannis Kossyvakis Software and data acquisition Shoaib Azhar Design and modelling of cooling system Lauri Kortelainen FEA analysis of thermo-mechanical behaviour of CLIC modules CFD analysis Anastasia Xydou Theoretical and experimental investigation on the bonding/brazing process Jeremy Blanc Electric design of data acquisition and control system
28
fabrizio.rossi@cern.ch 28 Updates on thermal tests NEXT CLIC TEST MODULE MEETINGS 1.CLIC Test Module Meeting (19.09.2012) A. Schoaib: "Modelling of hydraulic system of CLIC prototype type 0" 2.CLIC Test Module Meeting (03.10.2012) 3.CLIC Test Module Meeting (17.10.2012) 4.CLIC Test Module Meeting (31.10.2012) 5.CLIC Test Module Meeting (14.11.2012) 6.CLIC Test Module Meeting (28.11.2012) 7.CLIC Test Module Meeting (12.12.2012)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.