Download presentation
Presentation is loading. Please wait.
Published byMaximillian Owens Modified over 8 years ago
1
Mendeleev; Dubna 2009 Mendeleev’s principle against Einsteins relativity news from the chemistry of superheavy elements H.W. Gäggeler Reminiscences: from Mendelejeev’s periodic table to the discovery of mendelevium, the last “real” chemical element Positioning four new chemical elements into the periodic table during the last decade. Mendelejeevs dreams become true! How reliable is single atom chemistry? Proof of principle with elements Hs and 112 Einsteins influence on the chemistry of heaviest elemenst, so far up to Z=114 Laboratory for Radiochemistry and Environmental Chemistry
2
Mendelejeev‘s „second“ Periodic Table from 1871 D.I. Mendeleev (8 Feb. 1834 – 2 Feb. 1907)
3
Predictions by Mendeleev in 1871 Eka-Al: Discovered by P.E. Lecoq de Boisbaudran in 1875, named Ga Eka-Al: Discovered by P.E. Lecoq de Boisbaudran in 1875, named Ga Eka-B: Discovered by L.F. Nilson in 1879, named Sc Eka-B: Discovered by L.F. Nilson in 1879, named Sc Eka-Si: Discovered by C. Winkler in 18886, named Ge Eka-Si: Discovered by C. Winkler in 18886, named Ge
4
Major refinements Noble gases: Sir William Ramsey (1894) Noble gases: Sir William Ramsey (1894) Henry Moseley: Atomic number, determined via X-rays, defines ordering of elements (1914) Henry Moseley: Atomic number, determined via X-rays, defines ordering of elements (1914) Glenn T. Seaborg: Actinides series (1945) Glenn T. Seaborg: Actinides series (1945)
5
Periodic Table in the 1930‘s G.T. Seaborg, W. D. Loveland (1990)
6
H Li Na K Rb Cs FrRaAc Ba Sr Ca Mg Be Sc Y La Ti Zr Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os CoNiCuZnGaGeAs RhPdAgCdInSnSb IrPtAuHgTlPbBi RfDb BCNOF AlSiPSCl SeBr TeI PoAt 8788 89-103 104105 555657-71727374757677 3738394041424344454647484950515253 7879808182838485 1920212223242526272829303132333435 11121314151617 34 1 56789 1 2 3456789101112 1314151617 Lanthanides Actinides 114 He Ne Ar Kr Xe Rn 54 86 36 18 10 2 18 CePrNdPmSmEuGdTbDyHoErTmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr 58 90 59606162 91929394 63 9596979899100101 646566676869 102103 7071 La Ac 57 89 Periodic Table today Mt 109110 Ds 111 Rg Sg 106 Bh 107 Hs 108 112 - 114 116 118113115116
7
Courtesy: Yu.Ts. Oganessian
8
Mendeleev, Dubna 2009 Discovery of new elements – the failure of chemistry! The heaviest element discovered purely by chemical means: Mendelevium! (1955) → Synthesis: bombardment of 253 Es with -particles. → Collection of products in a foil. → Separation of products after dissolution of foil on a cation exchange column with -HIB
9
Elution of actinides on a cation exchange column by -HIB Elution in drops Count rate [cpm]
10
Mendeleev, Dubna 2009 Discovery of Mendelevium on the basis of 7 atoms A. Ghiorso et al., Phys. Rev. 98, 1518 (1955) Fm Es Cf unknown
11
H Li Na K Rb Cs FrRaAc Ba Sr Ca Mg Be Sc Y La Ti Zr Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os CoNiCuZnGaGeAs RhPdAgCdInSnSb IrPtAuHgTlPbBi RfDb BCNOF AlSiPSCl SeBr TeI PoAt 8788 89-103 104105 555657-71727374757677 3738394041424344454647484950515253 7879808182838485 1920212223242526272829303132333435 11121314151617 34 1 56789 1 2 3456789101112 1314151617 Lanthanides Actinides 114 - He Ne Ar Kr Xe Rn 54 86 36 18 10 2 18 CePrNdPmSmEuGdTbDyHoErTmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr 58 90 59606162 91929394 63 9596979899100101 646566676869 102103 7071 La Ac 57 89 Positioning of new elements during the last decade Bh 107 Hs 108 Mt 109110 Ds 111 Rg 112 - Sg 10619991999 Bh 107 Hs 10820022002 112 - Techniques developed at PSI and Bern University 116 114 200720072009?2009?
12
Mendeleev, Dubna 2009 Reactions used and number of atoms found in the „first ever chemical studies“ during the last decade Bohrium (Z=107); Main experiments at PSI 249 Bk( 22 Ne;4n) 267 Bh (T 1/2 = 17 s); 6 atoms (R. Eichler et al., Nature, 407, 64 (2000)) Hassium (Z=108); Main experiments at GSI 248 Cm( 26 Mg;5n) 269 Hs (T 1/2 = 15 s); 7 atoms (C.E. Düllmann et al., Nature, 418, 860 (2002)) Element 112; Main experiments at FLNR/JINR 242 Pu( 48 Ca,3n) 287 114 (T 1/2 = 0.5 s) 283 112 (T 1/2 = 4 s); 2 atoms (R. Eichler et al., Nature, 447, 72 (2007)). Confirmed with 3 additional atoms (R. Eichler et al., Angew. Chem. Int. Ed., 47(17), 3262 (2008) Element 114: Main experiments at FLNR/JINR 242,244 Pu( 48 Ca;3,4n) 287,288,289 114 (T 1/2 = 0.5s;0.8s;2.6s); 3 – 4 atoms (R. Eichler et al.,submitted to Nature (2008)).
13
Mendeleev, Dubna 2009 How reliable is single atom chemistry? 1 st example: hassium chemistry Investigation of hassium in form of its very volatile molecule HsO 4 Applied technique: Thermochromatography
14
Thermochromatography T=100K T=300K detectors Result: T dep H ads Temperature gradient T yield length Internal chromatogram T dep
15
0 10 20 30 40 50 60 70 80 90 123456789101112 Detector Rel. Yield [%] -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 Temperature [°C] Exp: 269 Hs (T 1/2 =9.7 s) Exp: 172 Os (T 1/2 =19.2 s) MCS (Os): -39.5 kJ/mol MCS (Hs): -46.5 kJ/mol Temperature profile -82±5 °C -44±5 °C HsO 4 OsO 4 Thermochromatography of OsO 4 and HsO 4 C.E. Düllmann et al., Nature 418,860 (2002) 1 atom 4 atoms 2 atoms
17
Mendeleev, Dubna 2009 Nobel Laureate Glenn T. Seaborg, The first human being, able to celebrate „his“ element!
18
Mendeleev, Dubna 2009 How reliable is single atom chemistry? 2 nd example: element 112 Element 112 presumably is highly volatile so that it can be separated and analysed in elemental form Applied technique: Thermochromatography
19
H Li Na K Rb Cs FrRaAc Ba Sr Ca Mg Be Sc Y La Ti Zr Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os CoNiCuZnGaGeAs RhPdAgCdInSnSb IrPtAuHgTlPbBi RfDb BCNOF AlSiPSCl SeBr TeI PoAt 8788 89-103 104105 555657-71727374757677 3738394041424344454647484950515253 7879808182838485 1920212223242526272829303132333435 11121314151617 34 1 56789 1 2 3456789101112 1314151617 Lanthanides Actinides 114 He Ne Ar Kr Xe Rn 54 86 36 18 10 2 18 CePrNdPmSmEuGdTbDyHoErTmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr 58 90 59606162 91929394 63 9596979899100101 646566676869 102103 7071 La Ac 57 89 Periodic Table today Mt 109110 Ds 111 Rg Sg 106 Bh 107 Hs 108 112 - 114 116 118113115116
20
Trend of sublimation enthalpy within group 12 ? Mendeleev says: 112 an even more volatile metal compared to Hg!
21
However,….. Pitzer (1975) says: because of relativistic effects element 112 could well behave like a noble gas. Reason: E112 has a filled 6d 10 7s 2 electronic shell configuration
22
Relativistic effects High atomic number: strong Coulomb attraction causes electrons to move faster. Causes relativistic mass increase [m=m 0 (1- )], with v/c; and, as a consequence, contraction of spherical orbitals (ns, np 1/2 ) Energy levels of spherical orbitals are increased Energy levels of high angular momentum orbitals are destabilized due to shielding effects by spherical orbitals Strong spin-orbit splitting
23
Example: the relativistic 6s/7s contraction in Au and Rg Consequence: Cu, Ag, Au nd 10 (n+1)s 1 Zn +,Cd +,Hg + however: Rg, 112 + nd 9 (n+1)s 2 ( 2 D 5/2 ) E.Eliav, U.Kaldor, P.Schwerdtfeger, B.Hess, Y.Ishikawa, Phys. Rev. Lett. 73, 3203 (1994). M.Seth, P.Schwerdtfeger, M.Dolg, K.Faegri, B.A.Hess, U.Kaldor, Chem. Phys. Lett. 250, 461 (1996). Courtesy:P. Schwerdtfeger
24
direct effect (contraction) indirect effect (expansion) relativistic nonrelativistic Relativistic Effects M.Kaupp, Spektrum der Wissenschaften, 2005 P. Pyykkö
25
How to experimentally determine a metallic character of a volatile element at a single atom level? → Determine interaction energy (adsorption enthalpy) with noble metals (e.g. Au) → If metallic: strong interaction (adsorption enthalpy) if non-metallic (noble gas like): weak interaction
26
Metal Surface
27
Quartz Surface T dep. Tl, Po, Pb, Bi ≥ 500 K
28
The EPIPHANIOMETER 219 Rn 211 Pb for 211 Pb (via 211 Bi) (Teflon) No 211 Pb detected for clean gas (no aerosol particles) H.W. Gäggeler et al., J. Aerosol Sci., 20, 557 (1989)
29
Application to atmospheric aerosol detection at exotic sites
30
Window/ Target ( 242,244 Pu) Beam ( 48 Ca) Beam stop SiO 2 -Filter Ta metal 850°C Quartz column Cryo On-line Detector (4 COLD) Carrier gas He/Ar (70/30) Teflon capillary (32 pairs PIN diodes, one side gold covered) Hg Loop Temperature gradient: 35°C to – 180 °C T l Rn The element 112,114 experiments (IVO Technique) 112,114? Recoil chamber Quartz inlay
31
283 112 9.52 MeV 279 Ds : 0.088 s SF 94+51 MeV 283 112 9.52 MeV 279 Ds : 0.072 s SF 112+ n.d. MeV 283 112 9.38 MeV 279 Ds : 0.592 s SF 108+123 MeV 283 112 9.47 MeV 279 Ds : 0.536 s SF 127+105 MeV 283 112 9.35 MeV 279 Ds : 0.773 s SF 85+12 MeV Observed in Chemistry: 283 112 4 s 9.54 MeV 287 114 0.51 s 10.02 MeV 279 Ds 0.18 s SF(>90%) 205 MeV Reported at FLNR: Oganessian et al. 2004 291 116 6.3 ms 10.7 MeV The E112 experiments in 2006/2007 242 Pu ( 48 Ca, 3n) 287 114 6.210 18 48 Ca during eff. 32 days (8 weeks absolute) N R =0.05 N R <1E-5
32
Results Monte Carlo simulation for one single component Experiment(-5°C) (-21°C) (-21°C) (-39°C) (-124°C) (-28°C) gas flow Courtesy: R. Eichler -52 +4 -3 kJ/mol
34
Trend of sublimation enthalpy within group 12
35
Production of E114 242 Pu ( 48 Ca, 3n) 287 114 284 112 0.097 s SF 288 114 0.8 s 9.95 MeV 283 112 4 s 9.54 MeV 287 114 0.51 s 10.02 MeV 279 Ds 0.2 s SF 285 112 29 s 9.16 MeV 289 114 2.6 s 9.82 MeV 281 Ds 11 s SF 244 Pu ( 48 Ca, 3-4n) 288-289 114 Yu.Ts. Oganessian et al., 2004
36
0 8060 40 20 120100 0 20 40 60 80 100 120 Standard enthalpies of gaseous monoatomic elements Atomic number H ° 298 [kcal/mol] B. Eichler, 1974
37
283 112 10.93 s 9.53 287 114 10.04 MeV 279 Ds : 0.242 s SF 114+103 284 112 : 0.11 s SF 62+n.d. 288 114 9.95 MeV 284 112 : 0.10 s SF 108+n.d. 288 114 9.81 MeV 242 Pu ( 48 Ca, 3n) 287 114 244 Pu ( 48 Ca, 3-4n) 288-289 114 285 112 9.20 MeV 289 114 281 Ds : 3.38 s SF 106+44 1.4310 19 48 Ca during 51 days 3.110 18 48 Ca during 16 days N R =1.8E-3 N R =1.1E-2 N R =2E-2 N R =1.5E-3 Results with element 114 Dubna 2007 Det#4 Det#6 - 2008
38
gold ice -88°C -90°C -93°C -4°C Results (2007/2008) Z=112
39
114 Exp(2007/2008) B. Eichler 2003 R. Eichler et al. 2002 V.Pershina et al 2008 Prediction and exp. result Dubna 2007/2008 Strong stabilization of elemental 6d 10 7s 2 7p 1/2 2 atomic state!
40
How to interpret low adsorption enthalpy of E114? Unexpected observation: E114 significantly different to Pb and even more volatile than E112.
41
Calculated van der Waals energies using covalent radii 1, polarizabilities 2 and ionisation potentials 2 1 P.Pyykkö, M. Atsumi, Chem.Eur. J., 2009, 15, 186 2 E=114: C. Thierfelder, B. Assadollahzadeh, P. Schwerdtfeger, S. Schäfer, R. Schäfer, Phys. Rev. A 78, 052506 (2008) E=112: V.Pershina, A. Borschevsky, E. Eliav, U. Kaldor, J. Chem. Phys. 128, 024707 (2008) E112 on Au: -30 kJ/Mol; exp.: -52 kJ/Mol E114 on Au: -23 kJ/Mol; exp.: -34 kJ/Mol (Rn on Au: - 24 kJ/Mol; exp.: -27 kJ/Mol) Courtesy: R. Eichler
42
Conclusion - On-line gas phase chemistry has reached the sensitivity of about 1 pb - Month-long beam times at highest possible beam intensities mandatory for chemical studies - Single atom chemistry yields reliable chemical information - Elements 112 and 114 surprisingly volatile - Next: element 113 (eka-Tl). Expected volatility of At. - Far future: chemistry from actually s-range to ms-range? (e.g. Stern-Gerlach experiment for atomic electronic configuration) [Proposal E.K. Hulet]
43
Acknowledgement - Excerpt for Z=112/114 studies - PSI team: R. Eichler et al. FLNR chemistry: S. Dmitriev, S. Shishkin FLNR GNS team: V.K. Utyonkov et al. FLNR VASSILISSA team: A.V. Yeremin et al. FLNR support: Yu. Ts. Oganessian LLNR target: K.J.Moody et al.
44
E112calc -52 +4 -3 kJ/mol Adsorption of E112 on Au Eichler, R. et al. Nature 487, 72 (2007) Result can be used to improve the prediction models B. Eichler 1985 B. Eichler 2003 V. Pershina et al. 2005/08 R. Eichler et al. 2002
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.