Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 11 Ischemia- reperfusion injury Zhao Mingyao BMC.ZZU.

Similar presentations


Presentation on theme: "Chapter 11 Ischemia- reperfusion injury Zhao Mingyao BMC.ZZU."— Presentation transcript:

1

2 Chapter 11 Ischemia- reperfusion injury Zhao Mingyao BMC.ZZU

3 1955, Sewell ligated coronary artery of dog, restore blood flow after deligation. What happened ? Brief history Simple phenomenon

4 Clinical : Shock, DIC Bypass surgery Fibrinolytic therapy Cardiopulmonary operation Organ transplantation

5 Concept of Ischemia-Reperfusion Injury The restoration of blood flow after transient ischemia may induce further reversible or irreversible cellular injury

6 Features of IRI : 1. reversible  irreversible 2. Massive in organs 3.participating factors oxygen paradox calcium paradox pH paradox

7 Without O 2 Normal O2 supply Without Ca 2+ with Ca 2+ Deteriorate injury Acidosis Correcting acidosis effect Perfusion fluid pH paradox Ca 2+ paradox O 2 paradox

8 Section 1 Etiology of IRI 1. Duration of ischemia 2. Dependency on O 2 supply 3. The condition of reperfusion: reperfusion pressure, speed, T, Na +, Ca 2+, K +, Mg 2+

9 Effect of Ischemic time on perfusion arrhythmia of rat Ischemic time incidence rate

10 Section 2 mechanism of IRI

11 Part 1. Injury of free radicals

12 Concept and Types of FR Free radicals are atoms or molecules with unpaired electrons in their outer orbital 1.Non-lipid free radicals 2.Lipid free radicals

13

14 (1) Oxygen free radical ( OFR) ---Induced by O2 Rective Oxygen Species (ROS) OFR H 2 O 2 Types O· - 2 OH· 1 O 2 Classification peroxynitrite

15 (2) Lipid radicals types : L· LO· Alkoxyl LOO· (3)Cl· 、 CH 3 · (Methane ) 、 NO ·

16 1. Generation of free radical 1) Initiation 2) Propagation 3) Degradation

17 (1)Production and scavenging of OFR 1) Origin of O· - 2 : ① Mt ② Natural oxidation of some substances ③ Enzyme catalysis ④ Toxin acting on cell

18 2 ) Production process of OFR Single electron reduction O 2 + e O 2  O 2 + 2e + 2H + H2O2 H2O2 H2O2H2O2 O 2 + 3 e + 3H + HO  + H 2 O O 2 + 4 e + 4H + 2 H 2 O Cytaa 3 SOD nse Single electron reduction of O 2

19 Haber-Weiss reaction (without Fe  2 ) O 2 - + H 2 O 2 O 2 + OH  +OH   SLOW

20 Fenton type of Haber-Weiss reaction ( with Fe  3 ) O 2 - + H 2 O 2 O 2 + OH  +OH  Fast  Fe  2 What significance ???

21 3 ) Scavenging of OFR ① Low molecule scavenger ② Enzymatic scavenger Water-soluble Lipid-soluble

22 ① low molecule scavenger *hydrofacies of intra- or extracell: Cysteine 、 Vit C 、 Glutathione *Cellular lipid : Vit E 、 Vit A Cytosol : NADPH

23

24 ② Enzymatic scavenger Catalase (CAT) Glutathione peroxidase (GSH-Px) Superoxide dismutase (SOD)

25 Dismutation reaction Single electron reduction of O 2 2O 2  + 2H + H 2 O 2 + O 2 H2O2H2O2 SOD nse ?

26 GSH-Px : containing selenium scavenging large biological molecule peroxide LOOH + 2GSH GSSG + LOH + H 2 O GSSG + NADPH + H + 2GSH + NADP + GSH-Px GSH reductase

27

28 (2) Mechanism of OFR ↑during IRI

29 1) Mitochondria pathway Ca 2+ enter Mt  Single electron reduction of O2 ↑ O - 2 · ↑ hypoxia  MnSOD 

30 Xanthine oxidase (XO )10% xanthine dehydrogenase(XD) 90% Ca 2 + sensitive enzyme 2) Xanthine oxidase(XO) pathway↑

31 Ischemia: ATP degradation Hypoxathine↑↑ Reperfusion: (1)Ca 2+ →protease XO ( 2 ) restore O 2 xanthine + O· - 2 + H 2 O 2 O· - 2 + H 2 O 2 + uric acid O2O2 O2O2 XD OH · XO role in formation of OFR

32 3)Neutrophil pathway NADH(I) NADPH(II) + O 2 NADPH oxidase H + + O - 2 ·+H 2 O 2 NADH oxidase C 3,LTB 4 Activates NP hexose bypass activation Respiratory burst

33 4) Catecholamine autooxidation pathway Adr Methyl transferase monoamine oxidase Vanillylmandelic acid (VMA) Renal excretion 80% during stress adrenochrome O 2 - · 

34 (3) The detrimental effects of OFR to tissue 1 ) Lipid membrane 2 ) Protein: channel, pump, 3 ) Enzyme 4 ) Nuclear acid : DNA

35 Membrane lipid peroxidation

36 Protein break Protein ~ -S-S- CH 3 -S- Lipid-lipid ~ O Two sulfur ~ Lipid –pro ~ Amino acid oxidation OH HO fatty acid oxidation OH HO MDA released by oxidated fatty acid Biomacromolecle crosslinkage Malondialdehyde (MDA)

37 DNA disruption and chromosome aberration induced by OH  about 80% damage OH +2300 (hydroxyl)

38

39 Part 2 Calcium overload

40 1. Ca 2+ transportation and distribution Na + - Ca 2+ cotransportor Ca 2+ pump Ca 2+ binding Pr Mt SR Ca 2+ Ca 2+ Channel

41 2. Mechanism of ~ ① Na + - Ca 2+ exchange↑: H + -Na + ↑; Na + - Ca 2+ ↑(forward mode reverse mode); PKC triggers ② ATP ↓: mitochondria damage, energy precursor ↓ ③ Membrane permeability ↑ ④ catecholamine ↑

42

43 α1α1 NE GqPLC P1P1 IP 3 Ca 2+ SR DG PKC H+H+ Na + Ca 2+ filament PKC activating Na + /Ca 2+ exchanger indirectly

44 3. The detrimental effects of Ca 2+ overload to tissue (1) Activating Ca 2+ -activated protease (2) Defects in membrane permeability activating phospholipase A 2 OFR (3) Hypercontracture and reperfusion arrhythmia cellular electrical action (4)Mitochondria damage

45 Part 3. The endothelial injury and neutrophil activation

46 1.The role of neutrophil activated ① Swelling ② Adhesion ③ Infiltration ④ Release: arachidonic acid, PAF, lysosomal enzyme ⑤ Respiratory burst ⑥ Cell adhesion molecules(CAM): selectins, integrins, immunoglobulin superfamily

47 2. Mechanism of no-reflow phenomenon Vaso-endothelial damage Vaso-endothelial edema Occlusion of microvascular luman

48 Rulo: 肉膜

49 3.NO and ONOO - production NO in VEC(eNOS), little, physiological NO in inflammatory cell(iNOS), rich, cytotoxic (Mt respiration, aconitase activity, DNA synthesis) and OONO - peroxynitrite

50 Free radicals with a nitrogen center ① Nitric oxide(NO) NADP + O2O2 NADPH L-arginine L-citrulline + NO NOS

51 ② Peroxynitrite, ONOO - NO+O 2.- ONOO - H2OH2O NO 2. + OH. + H + acidic Killing bacterial & tumor

52 Protein rupture Pro-pro linkage -S-S- CH 3 -S- O disulfide linkage Lipid-pro linkage Oxidation of AA Inhibit function of protein: lipid-protein- collagen linkage

53 OFR Ca 2+ VEC -NP ? Ca 2+ overload results in cellular death Brief summary Change of metabolism & energy

54 Section 3 Body change during IRI

55 1. Heart ( 1 ) Reperfusion arrhythmia ATP-sensitive K + channel open: hyperpolarization long chain acylcarnitines & lysophospholipids released reduced conduction velocity

56 AP shortening + conduction slowing = re-entrant arrhythmia Generation of ectopic beats

57 ( stunning ( 2 ) Myocardial stunning Myocardial contractile function is temporarily but reversibly impaired for a period of hours to days 5 min ischemia, reperfusion, 40min later restoring 1 hr ischemia, reperfusion, a month later restoring

58 stunning Mechanism of myocardial stunning OFR Ca 2+ overload No-reflow ATP↓ + contractile protein sensitivity ↓ for Ca 2+

59 ( 3 ) Myocardial metabolism ATP depletion ATP substrate catabolized, rushed out

60 Energy SourcesEnergy PoolEnergy Use Fatty Acids Lactate Pyruvate O2O2 Glycolysis (Anaerobic) Glucose Glucose-1-PO 4 Glycogen TCA cycle (Aerobic) ATP ADPPC C Myokinase Ca ++ ATPase Ca + + CA ++ T T ATP-M + A MA + ADP CONTRACTIONCONTRACTION CPK Processes Involving Energy Production and Utilization by the Myocardium Ca ++ tricarboxylic acid cycle phosphocreatine

61 ( 4 ) Myocardial ultrastructure Histopathologic features in the myocardium following reperfusion. Contraction band necrosis Interstitial haemorrhage Neutrophilic plugging Distal platelets–fibrin microembolisation

62

63

64

65 2. Cerebral, Hepatic, Pulmonary, Renal ischemia-reperfusion injury Structure Metabolism function change

66

67 Section 4 Section 4 Principle of prevent & treatment 1. Controlling reperfusion condition 2. Antioxidant and OFR scavenging agents 3. Inhibition of neutrophil activation 4. Ca 2+ antagonists or Ca 2+ channel blocker

68

69 Zhao Mingyao


Download ppt "Chapter 11 Ischemia- reperfusion injury Zhao Mingyao BMC.ZZU."

Similar presentations


Ads by Google