Download presentation
Presentation is loading. Please wait.
Published byChristina Waters Modified over 8 years ago
2
Chapter 11 Ischemia- reperfusion injury Zhao Mingyao BMC.ZZU
3
1955, Sewell ligated coronary artery of dog, restore blood flow after deligation. What happened ? Brief history Simple phenomenon
4
Clinical : Shock, DIC Bypass surgery Fibrinolytic therapy Cardiopulmonary operation Organ transplantation
5
Concept of Ischemia-Reperfusion Injury The restoration of blood flow after transient ischemia may induce further reversible or irreversible cellular injury
6
Features of IRI : 1. reversible irreversible 2. Massive in organs 3.participating factors oxygen paradox calcium paradox pH paradox
7
Without O 2 Normal O2 supply Without Ca 2+ with Ca 2+ Deteriorate injury Acidosis Correcting acidosis effect Perfusion fluid pH paradox Ca 2+ paradox O 2 paradox
8
Section 1 Etiology of IRI 1. Duration of ischemia 2. Dependency on O 2 supply 3. The condition of reperfusion: reperfusion pressure, speed, T, Na +, Ca 2+, K +, Mg 2+
9
Effect of Ischemic time on perfusion arrhythmia of rat Ischemic time incidence rate
10
Section 2 mechanism of IRI
11
Part 1. Injury of free radicals
12
Concept and Types of FR Free radicals are atoms or molecules with unpaired electrons in their outer orbital 1.Non-lipid free radicals 2.Lipid free radicals
14
(1) Oxygen free radical ( OFR) ---Induced by O2 Rective Oxygen Species (ROS) OFR H 2 O 2 Types O· - 2 OH· 1 O 2 Classification peroxynitrite
15
(2) Lipid radicals types : L· LO· Alkoxyl LOO· (3)Cl· 、 CH 3 · (Methane ) 、 NO ·
16
1. Generation of free radical 1) Initiation 2) Propagation 3) Degradation
17
(1)Production and scavenging of OFR 1) Origin of O· - 2 : ① Mt ② Natural oxidation of some substances ③ Enzyme catalysis ④ Toxin acting on cell
18
2 ) Production process of OFR Single electron reduction O 2 + e O 2 O 2 + 2e + 2H + H2O2 H2O2 H2O2H2O2 O 2 + 3 e + 3H + HO + H 2 O O 2 + 4 e + 4H + 2 H 2 O Cytaa 3 SOD nse Single electron reduction of O 2
19
Haber-Weiss reaction (without Fe 2 ) O 2 - + H 2 O 2 O 2 + OH +OH SLOW
20
Fenton type of Haber-Weiss reaction ( with Fe 3 ) O 2 - + H 2 O 2 O 2 + OH +OH Fast Fe 2 What significance ???
21
3 ) Scavenging of OFR ① Low molecule scavenger ② Enzymatic scavenger Water-soluble Lipid-soluble
22
① low molecule scavenger *hydrofacies of intra- or extracell: Cysteine 、 Vit C 、 Glutathione *Cellular lipid : Vit E 、 Vit A Cytosol : NADPH
24
② Enzymatic scavenger Catalase (CAT) Glutathione peroxidase (GSH-Px) Superoxide dismutase (SOD)
25
Dismutation reaction Single electron reduction of O 2 2O 2 + 2H + H 2 O 2 + O 2 H2O2H2O2 SOD nse ?
26
GSH-Px : containing selenium scavenging large biological molecule peroxide LOOH + 2GSH GSSG + LOH + H 2 O GSSG + NADPH + H + 2GSH + NADP + GSH-Px GSH reductase
28
(2) Mechanism of OFR ↑during IRI
29
1) Mitochondria pathway Ca 2+ enter Mt Single electron reduction of O2 ↑ O - 2 · ↑ hypoxia MnSOD
30
Xanthine oxidase (XO )10% xanthine dehydrogenase(XD) 90% Ca 2 + sensitive enzyme 2) Xanthine oxidase(XO) pathway↑
31
Ischemia: ATP degradation Hypoxathine↑↑ Reperfusion: (1)Ca 2+ →protease XO ( 2 ) restore O 2 xanthine + O· - 2 + H 2 O 2 O· - 2 + H 2 O 2 + uric acid O2O2 O2O2 XD OH · XO role in formation of OFR
32
3)Neutrophil pathway NADH(I) NADPH(II) + O 2 NADPH oxidase H + + O - 2 ·+H 2 O 2 NADH oxidase C 3,LTB 4 Activates NP hexose bypass activation Respiratory burst
33
4) Catecholamine autooxidation pathway Adr Methyl transferase monoamine oxidase Vanillylmandelic acid (VMA) Renal excretion 80% during stress adrenochrome O 2 - ·
34
(3) The detrimental effects of OFR to tissue 1 ) Lipid membrane 2 ) Protein: channel, pump, 3 ) Enzyme 4 ) Nuclear acid : DNA
35
Membrane lipid peroxidation
36
Protein break Protein ~ -S-S- CH 3 -S- Lipid-lipid ~ O Two sulfur ~ Lipid –pro ~ Amino acid oxidation OH HO fatty acid oxidation OH HO MDA released by oxidated fatty acid Biomacromolecle crosslinkage Malondialdehyde (MDA)
37
DNA disruption and chromosome aberration induced by OH about 80% damage OH +2300 (hydroxyl)
39
Part 2 Calcium overload
40
1. Ca 2+ transportation and distribution Na + - Ca 2+ cotransportor Ca 2+ pump Ca 2+ binding Pr Mt SR Ca 2+ Ca 2+ Channel
41
2. Mechanism of ~ ① Na + - Ca 2+ exchange↑: H + -Na + ↑; Na + - Ca 2+ ↑(forward mode reverse mode); PKC triggers ② ATP ↓: mitochondria damage, energy precursor ↓ ③ Membrane permeability ↑ ④ catecholamine ↑
43
α1α1 NE GqPLC P1P1 IP 3 Ca 2+ SR DG PKC H+H+ Na + Ca 2+ filament PKC activating Na + /Ca 2+ exchanger indirectly
44
3. The detrimental effects of Ca 2+ overload to tissue (1) Activating Ca 2+ -activated protease (2) Defects in membrane permeability activating phospholipase A 2 OFR (3) Hypercontracture and reperfusion arrhythmia cellular electrical action (4)Mitochondria damage
45
Part 3. The endothelial injury and neutrophil activation
46
1.The role of neutrophil activated ① Swelling ② Adhesion ③ Infiltration ④ Release: arachidonic acid, PAF, lysosomal enzyme ⑤ Respiratory burst ⑥ Cell adhesion molecules(CAM): selectins, integrins, immunoglobulin superfamily
47
2. Mechanism of no-reflow phenomenon Vaso-endothelial damage Vaso-endothelial edema Occlusion of microvascular luman
48
Rulo: 肉膜
49
3.NO and ONOO - production NO in VEC(eNOS), little, physiological NO in inflammatory cell(iNOS), rich, cytotoxic (Mt respiration, aconitase activity, DNA synthesis) and OONO - peroxynitrite
50
Free radicals with a nitrogen center ① Nitric oxide(NO) NADP + O2O2 NADPH L-arginine L-citrulline + NO NOS
51
② Peroxynitrite, ONOO - NO+O 2.- ONOO - H2OH2O NO 2. + OH. + H + acidic Killing bacterial & tumor
52
Protein rupture Pro-pro linkage -S-S- CH 3 -S- O disulfide linkage Lipid-pro linkage Oxidation of AA Inhibit function of protein: lipid-protein- collagen linkage
53
OFR Ca 2+ VEC -NP ? Ca 2+ overload results in cellular death Brief summary Change of metabolism & energy
54
Section 3 Body change during IRI
55
1. Heart ( 1 ) Reperfusion arrhythmia ATP-sensitive K + channel open: hyperpolarization long chain acylcarnitines & lysophospholipids released reduced conduction velocity
56
AP shortening + conduction slowing = re-entrant arrhythmia Generation of ectopic beats
57
( stunning ( 2 ) Myocardial stunning Myocardial contractile function is temporarily but reversibly impaired for a period of hours to days 5 min ischemia, reperfusion, 40min later restoring 1 hr ischemia, reperfusion, a month later restoring
58
stunning Mechanism of myocardial stunning OFR Ca 2+ overload No-reflow ATP↓ + contractile protein sensitivity ↓ for Ca 2+
59
( 3 ) Myocardial metabolism ATP depletion ATP substrate catabolized, rushed out
60
Energy SourcesEnergy PoolEnergy Use Fatty Acids Lactate Pyruvate O2O2 Glycolysis (Anaerobic) Glucose Glucose-1-PO 4 Glycogen TCA cycle (Aerobic) ATP ADPPC C Myokinase Ca ++ ATPase Ca + + CA ++ T T ATP-M + A MA + ADP CONTRACTIONCONTRACTION CPK Processes Involving Energy Production and Utilization by the Myocardium Ca ++ tricarboxylic acid cycle phosphocreatine
61
( 4 ) Myocardial ultrastructure Histopathologic features in the myocardium following reperfusion. Contraction band necrosis Interstitial haemorrhage Neutrophilic plugging Distal platelets–fibrin microembolisation
65
2. Cerebral, Hepatic, Pulmonary, Renal ischemia-reperfusion injury Structure Metabolism function change
67
Section 4 Section 4 Principle of prevent & treatment 1. Controlling reperfusion condition 2. Antioxidant and OFR scavenging agents 3. Inhibition of neutrophil activation 4. Ca 2+ antagonists or Ca 2+ channel blocker
69
Zhao Mingyao
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.