Download presentation
Presentation is loading. Please wait.
Published byMaximillian Watkins Modified over 9 years ago
3
Cosmology in superfluid 3 He Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France
5
E P Fermi liquid Vc Ef Pf
7
Zurek scenario
9
Superfluid 3 He bolometry
15
Order parameter He-B R(n ) H L S k d 3 L S H
16
HPD Catastropha PS Grenoble, 1999 A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984). Coherent, Magnetically Excited States Domain with Homogeneous Precession of Magnetization, 1984 Catastrophic relaxation Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, J.Nyeki, D.A.Sergatskov, Europhysics Letters, v.8, p.645, (1989).
17
2. Coherenent State, which radiates the Persistent signal Moscow results Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, S.R.Zakazov, Physica B, v. 194, p. 827, (1994). Discovery, Lancaster, 1992 Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, Phys, Rev, Letters, v.69, p3092, (1992). ``Coherent Spin Precession and Texture in 3He-B.'' Yu.M. Bunkov, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 231 (1996). Lancaster experimental conformation Yu.M. Bunkov, D.J. Cousins, M.P.Enrico, S.N.Fisher, G.R.Pickett, N.S.Shaw, W.Tych, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 233 (1996). Moscow Lancaster
18
Q-ball - Spherically symmetric non-topological soliton with conserved global charge Q Proposed by S.Colleman (1985) in frame of relativistic field theory as a semi-classical model of elementary particles formation Current interest due to Q-balls dark matter model E(mQ) < E(Q) m In relativistic field theory (r t) exp(- i t) (r) Q = d 3 x[i( d t d t ] E d 3 x[ I I 2 I I 2 U(I I)] Q (r) = S - S z (r) dEd dS z = = H dd (S,L) S + (r) = S (r) e i t In 3 He-B
19
LzLz SzSz 0 1 0 1 1 Q (r) = S - S z (r) dEd dS z = = H dd (S,L) S + (r) = S (r) e i t In 3 He-B EdEd R(n ) L S H L H S
20
H L S Follow Voislav Golo algorithm (15 equations) Spatial case Yu.M.Bunkov, V.L.Golo, J Low Temp Phys, to be published + E grad + E surf
21
Position, 0.1 mm Angles of deflection, degree
22
Position, 0.1 mm Angles of deflection, degree
23
Position, 0.1 mm Angles of deflection, degree
24
Larmore freq. Max NMR shift
25
H L S 3D Q-ball
26
H L S Q ball on topological defect
27
HH Computer simulation Grenoble 2004 H Lz LHLH z Calculations of a spatial deflection of spin and orbit on basis of Poisson brackets and Takagi relaxation Follow Voislav Golo algorithm
28
Grenoble, 2004 Angles of deflection, degree Position, 0.1 mm
29
Grenoble, 2004 Angles of deflection, degree Position, 0.1 mm
30
1% HPD
31
H L S
32
Grenoble experiments with Non-linear Stationary Spin Waves 0.25 Tc A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998).
33
Following Landau and Lifchitz we consider an anharmonic oscillator with a third order of nonlinearity Non-linear Stationary Spin-waves – or Q ball, if you like! A.S. Chen,Yu. M. Bunkov, H. Godfrin, R. Schanen and F. Scheffler J. of Low Temp. Phys. 113, 693 (1998).
34
HH H = H+ Hz Quantum billiard Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)
35
Grenoble, 1999 Off-resonante NMR excitation D.J.Cousins, S.N.Fisher, A.I.Gregory, G.R.Pickett, N.S.Shaw, Phys. Rev. Lett, 82, 4484, (1999) Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999) s p d rf Qb dd
36
http://boojum.hut.fi/personnel/THEORY/volovik.html Grigori Volovik
47
Non-linear Stationary Spin Waves in Flared out texture NMR of Rotated superfluid 3He-B O.T.Ikkala, G.E.Volovik, P.Y.Hakonen, Yu.M.Bunkov, S.T.Islander, G.A.Haradze, JETP Letters v.35, p.416 (1982). L First observation of Spin Waves in Orbital Texture D.D.Osheroff, Physica B, 90, 20 (1977). Angle L-H Before rotationDuring rotationAfter rotation H
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.