Download presentation
Presentation is loading. Please wait.
Published byLaurence Percival Porter Modified over 9 years ago
1
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effect in Weizsaecker-Skyrme mass formula ISPUN14, 2014.11.3-8, Ho Chi Minh City 1 Guangxi Normal University, Guilin, China 2 China Institute of Atomic Energy, Beijing, China 3 Peking University, Beijing, China Introduction Weizsaecker-Skyrme mass formula Shell gaps and charge radii of nuclei Summary
2
Yu. Oganessian. SKLTP/CAS - BLTP/JINR July 16, 2014, Dubna neutrons → 1.Central position of the island for SHE ? N. Wang, M. Liu, X. Wu, PRC 82 (2010) 044304 Courtesy of Qiu-Hong Mo
3
Nasirov, et al., Phys. Rev. C 84, 044612 (2011) Different mass tables lead to quite different survival probability of Compound nucleus 2. Survival probability of SHE ? Fission barriers of super-heavy nuclei :
4
FRDM : At. Data Nucl. Data Tables59, 185 (1995) HFB17: Phys. Rev. Lett. 102, 152503 (2009) PC-PK1:Phys. Rev. C82, 054319 (2010) DZ28: Phys. Rev. C 52, 23 (1995) WS3 : Phys. Rev. C 84, 014333 (2011)
5
www.nupecc.org Semi-empirical mass formula ‘semi-empirical mass formula’ of von Weizsäcker in 1935
6
Volume term Surface energy term Coulomb energy term Symmetry energy term Nuclear surface diffuseness results in the deformation energies being complicated
7
Isospin dependence of the surface diffuseness Deformation dependence of the symmetry energy coefficients of nuclei Skyrme energy density functional + ETF2
8
Skyrme EDF plus extended Thomas-Fermi approach, significantly reduces CPU time Parabolic approx. for the deformation energies
9
Macro-micro concept & Skyrme energy density functional Liquid drop Deformation Shell Residual Residual : Mirror 、 pairing 、 Wigner corrections... PRC81-044322 ; PRC82-044304 ; PRC84-014333
10
Isospin dependence of model parameters 1.Symmetry energy coefficient 2.Symmetry potential 3.Strength of spin-orbit potential 4.Pairing corr. term symmetry potential WS3 : Phys.Rev.C84_014333
11
5. Isospin dependence of surface diffuseness N. Wang, M. Liu, X. Z. Wu, and J. Meng, Phys. Lett. B 734 (2014) 215
12
Symmetry energy coefficient: J = 29.1 MeV (WS3), J = 30.2 MeV (WS4) 2353 measured masses in AME2012
13
N=16 N=184 E mic (FRDM): ground state microscopic energy FRDM WS* Shell corrections of super-heavy nuclei
14
162 178 162 Kowal,et al., PRC82_014303 152
15
Mo, Liu, Wang, Phys. Rev. C 90, 024320 (2014 )
17
Nuclear deformations Prolate Oblate N. Wang, T. Li, Phys. Rev. C88, 011301(R) Rms charge radii
18
RMF: Lalazissis, Raman, and Ring, At. Data Nucl. Data Tables 71, 1 (1999)
19
Inspired by the Skyrme energy-density functional, we propose a new macro-micro mass formula with an rms error of 298 keV, considering the isospin dependence of model parameters. Based on the shell gaps and alpha-decay energies from the Weizsaecker-Skyrme mass formula, N=142, 152, 162, 178; Z=92, 100, 108, 120 could be sub-shell in super-heavy region. Nuclear rms charge radii can be well reproduced with the deformations and shell corrections from the WS formula. Summary
20
Rms (keV) FRDMHFB24WSWS4 To 2353 masses 654549525298 Number of model para. 31301318 9 y9 y 13 y 4 y4 y Rms error
21
Thank you for your attention Codes & Nuclear mass tables : www.ImQMD.com/mass www.ImQMD.com/mass Guilin, China
22
Symmetry energy coefficient of finite nuclei Wang, Liu, PRC81, 067302 I=(N-Z)/A NPA818 (2009) 36
23
Spin-orbit term Xu and Qi, Phys. Lett. B724 (2013) 247 K SO = -1K SO = 1
24
Predictive power for new masses in AME2012 in MeVWS3FRDMDZ28HFB17HFB24 sigma (M) 2353 0.3350.6540.3940.5760.549 sigma (M) 219 0.4240.7650.6730.6480.580 sigma(S n ) 2199 0.2730.3750.2940.5000.474 HFB24: PRC88-024308
25
181,183 Lu, 185,186 Hf, 187,188 Ta, 191 W, and 192,193 Re were measured for the first time, uncertainty of 189,190 W and 195 Os was improved (Storage-ring mass spectrometry GSI) HFB21: S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82, 035804 (2010) Test the models with very recently measured masses
27
Mo, Liu, Wang , Phys. Rev. C 90, 024320 (2014)
28
Constraint from mirror nuclei reduces rms error by ~10% with the same mass but with the numbers of protons and neutrons interchanged charge-symmetry / independence of nuclear force 325692116
29
Wigner effect of heavy nuclei K. Mazurek, J. Dudek , et al., J. Phys. Conf. Seri. 205 (2010) 012034 N=Z (N,Z)
30
H. F. Zhang, et al., Phys. Rev. C 85, 014325 (2012) N=178 WS* N=178 WS* N=162N=178 WS*
31
原子核壳能隙可以给出子壳信息
32
2013.6.17 ,桂林 L. S. Geng, H. Toki, and J. Meng, Prog. Theor. Phys. 113, 785 (2005)
33
Deformation energies
35
Hendrik Schatz, Klaus Blaum Nuclear mass formulas are also important for the study of nuclear astrophysics Beta-decay energies and neutron separation energies
36
www.nupecc.org To predict the ~5000 unmeasured masses based on the ~2400 measured masses, Not an easy task! Bao-Hua Sun WS4: Wang, Liu, Wu, Meng, Phys. Lett. B 734, 215 (2014)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.