Download presentation
Presentation is loading. Please wait.
Published byJune Franklin Modified over 8 years ago
1
1 11/20/13 1 20/10/2014 Jinniu Hu Stellar neutrino emission at finite temperature in relativistic mean field theory Jinniu Hu School of Physics, Nankai University Quarks and Compact Stars 2014, October, 20-22, 2014, Beijing, China
2
20/10/2014 Jinniu Hu Outline Introduction Theoretical framework Numerical results Summary and perspective
3
20/10/2014 Jinniu Hu The origin of neutron star http://www.seasky.org/celestial-objects/stars.html
4
20/10/2014 Jinniu Hu Neutron star cooling Direct Urca process Modified Urca process NN bremsstrahlung process D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, P. Haensel, Phys. Rep. 354(2001)1
5
20/10/2014 Jinniu Hu The research status: from the point of neutron star matter Fermi gas model : J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel, Phys. Rev. Lett. 66(1991)2701 Relativistic mean field theory (σ,ω,ρ) : L. B. Leinson, and A. Pérez, Phys. Lett. B 518(2001)15 L. B. Leinson, Nucl. Phys. A 707(2002)543 G. Shen, J. Meng and, G. C. Hillhouse G. C. HEP&NP, Supp. 28(2004)99 W. B. Ding, G. Z. Liu, M. F. Zhu, Z. Yu, and E. G. Zhao, A&A 506 (2009) L13 Relativistic mean field theory (σ,ω,ρ,δ) : Y. Xu, G. Z. Liu, C. Z. Liu, C. B. Fan, H. Y. Wang, M. F. Zhu and, E. G. Zhao, Chin. Phys. Lett. 30(2013)129501 Brueckner-Hartree-Fock theory : M. Baldo, G. F. Burgio, H.-J. Schulze, and G. Taranto, Phys. Rev. C 89(2014)048801
6
20/10/2014 Jinniu Hu Proton-neutron effective mass splitting in relativistic mean field (RMF) theory ✓ Scalar isovector meson in Hartree approximation ✓ Relativistic Hartree-Fock approximation X. Roca-Maza, X. Vinas, M. Centelles, P. Ring, and P. Schuck, Phys. Rev. C 84(2011) 054309 σ,ω,ρ,π W. L. Long, N. Van Giai, J. Meng, Phys. Lett. B 604(2006) 150
7
20/10/2014 Jinniu Hu Outline Introduction Theoretical framework Numerical results Summary and perspective
8
20/10/2014 Jinniu Hu Direct Urca process ✓ Neutrino emissivity Q (D) ✓ The matrix element of the neutron beta decay G F, C, C V, C M, C A are the coupling constants in weak interaction and F q is the form factor D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, P. Haensel, Phys. Rep. 354(2001)1
9
20/10/2014 Jinniu Hu Direct Urca process ✓ Fermi–Dirac distribution ✓ The Neutrino emissivity in non-relativistic limit where, and
10
20/10/2014 Jinniu Hu The neutrino emissivity in other processes The modified Urca (MU) processes The NN bremsstrahlung (BNN) processes
11
20/10/2014 Jinniu Hu ✓ Lagrangian RMF theory in finite temperature ✓ Effective nucleon mass in RMF theory ✓ Pressure density ✓ Energy density ✓ Fermion and antifermion distribution functions B. Liu, V. Greco, and V. Baran Phys. Rev. C 65(2002)045201
12
20/10/2014 Jinniu Hu Outline Introduction Theoretical framework Numerical results Summary and perspective
13
20/10/2014 Jinniu Hu The properties of nuclear matter Nuclear matter Yp: proton fraction npe neutron star matter T=0 NLδ : B. Liu, V. Greco, and V. Baran Phys. Rev. C 65(2002)045201 DD-MEδ : X. Roca-Maza, X. Vinas, M. Centelles, P. Ring, and P. Schuck, Phys. Rev. C 84(2011) 054309 ρ 0 (fm -3 )E/A (MeV)a asym (MeV)K (MeV)M * /M NLδ0.160−16.0030.50240.00.75 DD-MEδ0.152−16.1232.35219.10.61
14
20/10/2014 Jinniu Hu The critical density of Direct Urca process at T=0
15
20/10/2014 Jinniu Hu Reduction factors M ij at finite temperature NLδ
16
20/10/2014 Jinniu Hu DD-MEδ Reduction factors M ij at finite temperature
17
20/10/2014 Jinniu Hu Proton fractions at npe neutron matter L. W. Chen, F. S. Zhang, Z. H. Lu, W. F. Li, Z. Y. Zhu, and H. R. Ma, Jour. Phys. G 27 (2001)1799 A. Li, X. R. Zhou, G. F. Burgio, and H. –J Schulze, Phys. Rev. C 81(2010)025806
18
20/10/2014 Jinniu Hu Reduction factors: NLδ VS DD-Meδ T=0
19
20/10/2014 Jinniu Hu Reduction factors: δ meson effect DD-ME2: G. A. Lalazissis, T. Niksi´, D. Vretenar, and P. Ring, Phys. Rev.C 71 (2005)024312 DD-MEδ: X. Roca-Maza, X. Vinas, M. Centelles, P. Ring, and P. Schuck, Phys. Rev. C 84(2011) 054309 M 11 M 31 M 13 M 22 M 40 M 04
20
20/10/2014 Jinniu Hu The effective proton and neutron masses: DD-ME2 VS DD-MEδ npe NM
21
20/10/2014 Jinniu Hu Outline Introduction Theoretical framework Numerical results Summary and perspective
22
20/10/2014 Jinniu Hu Summary 1. We study the neutrino emissivity at finite temperature in relativistic mean field theory. 2. The neutrino emissivity in non-relativistic limit is mainly determined by the nucleon effective masses. 3. The neutrino emissivity becomes larger at high temperature and suppressed at large density. 4. The isovector meson is very important in neutrino emission, which generates the proton-neutron mass splitting. Perspectives 1. The relativistic beta decay matrix elements 2. The effective mass splitting from Fock term 3. The neutrino emissivity in strangeness freedom ……
23
20/10/2014 Jinniu Hu Thank you very much for your attention !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.