Download presentation
Published byLuke Duncan Modified over 11 years ago
1
Rheology and modelling Rzeszow University of Technology
Synovial fluid. Rheology and modelling Anna Kucaba-Pietal Rzeszow University of Technology Poland A recent study suggests that the gunk has under certain conditions, liquid crystal properties. The use of a liquid crystal model to describe the synovial fluid, unlike other models, can consistently explain many complex electromechanical processes occurring in the articular joints and "intelligence" of the pond [150, 195]. It therefore seems very promising receipt tribological calculations within this model. It turns out, however, that although the mathematical description of the liquid crystal is [48, 49 and literature therein], the equations describing the flow of liquid crystals are so complex that they can not be solved now. The way out of the situation seems to apply, as approximations micropolar fluid model, in which the size of tribological joint can be determined. It is, however, answer the question, what is the applicability of the isotropic description to "crystal" synovial fluid.
2
purpose of the work To examine whether the use of an isotropic micropolar model to describe the liquid crystal synovial fluid is appropriate Performing calculations tribological size biobearings on the basis of the theory of micropolar fluids for physiological data and comparison with the results of clinical observations A viscous, non-Newtonian fluid found in the cavities of synovial joints. With its yolk-like consistency ("synovial" partially derives from ovum, Latin for egg), its principal role is to reduce friction between the articular cartilage of synovial joints during movement. Synovial fluid is a thick, stringy fluid found in the cavities of synovial joints. With its egg-like consistency ("synovial" partially derives from ovum, Latin for egg), synovial fluid reduces friction between the articular cartilage and other tissues in joints to lubricate and cushion them during movement. The inner membrane of synovial joints is called the synovial membrane and secretes synovial fluid into the joint cavity. This fluid forms a thin layer (roughly 50 μm) at the surface of cartilage and also seeps into microcavities and irregularities in the articular cartilage surface, filling all empty space. The fluid in articular cartilage effectively serves as a synovial fluid reserve. During movement, the synovial fluid held in the cartilage is squeezed out mechanically to maintain a layer of fluid on the cartilage surface (so-called weeping lubrication).
3
Biobearing hip joint Synovial fluid
coefficient of friction cx ~ , It works about 70 years Transfer the load from a few to 18MP The synovial fluid fills a joint cavity coating the cartilage surfaces [3,4]. The thickness of synovial fluid layer varies between 5 μm to 1 mm. Biołozysko is the most perfect mechanism. Biosmarowania mechanism is not fully understood Some cartilage lesions lead to a drastic decrease in load-bearing capacity of the pond and the time approaching powierrzchni which clinically manifested by pain. Despite increasing research in this area has not yet explained the phenomenon of nature anomalously low friction and wear in the joints of living organisms. Low friction in the joints by. Dowson is indirectly related to the viscosity of synovial fluid. Viscosity depends on the concentration of the acid HA. However, it seems that budpwa biolozyska, in particular cartilage plays an important role key role. Koupchinow hypothesized on the lubrication of the joint. It is believed that the load of the pond there is a low-molecular imprinting components of the fluid through the pores of cartilage. High-molecular hyaluronic acid complex - proteins (which increases the density of liquid synowialnym) is a gel-like lubricant. Great potential for lubricating the film are the result of the pseudo-plastic properties, ie the possibility of shear thinning. cartilage
4
cartilage
5
Synovial Fluid Contents value Dry matter 0,133,5 Density(20oC)
1,00811,015 pH 7,27,4 viscosity (20oC) water, g/kg 960988 hyaluronic acid (HA ) 2-3% The content of dry matter g/kg 1240 Albumins, globulins g/l Phospholipids,glycoprotein's 10,721,3 10,2 0,5 Mucyns, g/l 0,681,35 Glucoses, g/l jak w surowicy krwi Urynial Acid, mg/l 73,4 The synovial fluid is a dialysate of blood plasma. It consists to 94% of water. Moreover, it contains a very specific and very important polymer known as a hyaluronic acid (HA - hyaluronate). It also contains some macromolecular components like glycoproteins, phospholipids and low molecular compounds e.g. liquid crystalline cholesterol ester and ions. Hyaluronan is a water soluble polysacharide and can create, under suitable concentration, liotropic liquid crystalline phase within the range of physiological temperatures. 5 5
6
Synovial Fluid Main Factors affecting the rheological properties:
a) Hyaluronic Acid concentation c) Molecular weigh of Hyaluronic Acid d) temperature Sodium Hyaluronate, Hyaluronan Made up of repeating glucuronic acid and N-acetylglucosamine subunits High molecular weight: 0.2 to 10 million Dalton Major component of synovial fluid Exhibits viscoelastic properties . Hyaluronan is a water soluble polysacharide and can create, under suitable concentration, liotropic liquid crystalline phase within the range of physiological temperatures 6 6
7
HA concentration effect on Synovial fluid rheology
efekt przędliwości własności lepkosprężyste – efekt Barusa Synovial fluid is a liquid nieNewtonowskim, its viscosity varies in the range from to Viscosity depends on koncenracji Hialurynowego acid. synovial fluid is a liquid with the substructures, which should be reflected in his description of the rheological Maz has viscoelastic properties shows the effect of what we PRZEDLIWOSCI? The influence of HA concentration on viscosity coefficient of synovial fluid 7 7
8
Rheumatic Diseases In normal joints synovial fluid shows higher elastic properties. For diseases such as Rheumatoid arthritis, seropositive and seronegative, it is observed to decrease in the elastic and viscous properties of synovial fluid In the elderly peoples and competitive athletes, a decrease in viscosity and reduced HA chain length is observed.
9
Perspectives Pathophysiological significance of biofluid rheology
Develop an understanding of how the micro- and nano-structure of blood influences its rheology Explore to use of rheological parameters in diagnostics and menagement of clinical disorders and inoptimisation of blood processing Explore new methods of measurement suited for clinical application Maintain new type apparatus for such measurements
10
OThe mathematical description of the liquid crystal medium versus
micropolar fluid model nlk = –nkl Nowe, występujące w nich symbole oznaczają: n = {nkl} – tensor rotacji (ang. gyration tensor) związany z wektorem mikrorotacji w wzorem: wk = –1/2e klm nlm, j = {jkl} – tensor mikrobezwładności (mikroinercji), który jest zarówno miarą „uporządkowania” ośrodka ciekłokrystalicznego, jak i określa wewnętrzny moment kątowy pędu, oznaczony symbolem Jk w rozdz. 1. pracy: Jk = jkl wl. Ogólna forma zapisu równań konstytutywnych wyprowadzonych przez Eringena [48, 49], określających tensory: naprężeń T oraz naprężeń momento- wych C, jest taka sama dla wszystkich rodzajów ciekłych kryształów (nematycznych, cholesterolowych, smektycznych): Jako RT i RC oznaczył on te składowe tensorów, które są funkcjami zmiennych niedyssypatywnych, tzn. Ry = (r-1, T, jkl, gkl), i przy określeniu których korzysta się z funkcji energii Helmholtza y(Ry). Z kolei symbole DT i DC oznacza- ją te składowe tensorów, które wyznacza się, korzystając z funkcji dyssypacji F (Ry, Dy), gdzie Dy = (T, T/T, akl, bkl). Symbolami: akl = Vk,l – eklmwm oraz bkl = wk,l oznaczono tu za pracą [48] składowe tensorów deformacji prędkości i mikrorotacji, {gkl} – tensor skręcenia, który jest miarą deformacji moleku- ły ciekłego kryształu. Funkcja energii Helmholtza y jest definiowana jako y = e - Th, gdzie e - energia wewnętrzna, h - entropia, T – temperatura [48]. Konsekwencją założenia o izotropowości płynu [51] są następujące własności tensorów: mikroinercji (7.13) rotacji nlk = –nkl (7.14) Natomiast założenie, że elementy płynu nie ulegają deformacji, prowadzi do zerowania się wszystkich składowych tensora skręcenia:
12
Cartilage - construction
20 mm 5 mm 50 mm 2 mm
13
Cartilage surface waviness exhibits
The coefficient of friction during movement along (1) and perpendicular to Microgroove (2). (Kupchinov) Magn. X 300
15
Synovial fluid - rheological properties
dynamic viscosity coefficient of a HA solution coefficient of dynamic viscosity of synovial viscoelastic properties - Barus effect
16
Cartilage - the construction
50 mm 20 mm 20 mm 5 mm 2 mm 2 mm
17
Model Rivlina-Ericksena
gdzie: t –stress tensor p – pressure I – tensor jednostkowy, A1 i A2 – shear tensor Rivlina-Ericksena, h, a, b – material constants of synovial
18
Micropolar fluid equations
Tij = (-p +lV k,k)dij + m(Vi,j + V j,i) + k(V j,i - eijkWk) , Cij= d Wk,kdij + bWi,j + gWj,i .
19
Micropolar fluid equations
Thus, in the context of the analysis, we can conclude that the mathematical model describes the center micropolar fluid liquid crystal phase approximately isotropic, that does not account for the deformation and twisting? Mush molecules. As a consequence, does not describe the viscoelastic properties of synovial shown for example in [148, 149].
20
The dimensionless form of the m.f. equations
21
The calculated bearing capacity W for different lengths L
of HA molecules pozaslaniaj synku na rysunkach polskie napisy Ten slajd proszę rozbi mi na dwa slajdy , tytul taki sam, Na jednym dwa z boku na drugim wykres. · h = 40 mm, · a = 0.04 m = R/2 · U = 0.01 m/s model the flow area as the area between the parallel plates, surface plates corresponds to lubricate the joint, flow is axisymmetric, tile surface is hard and impermeable and do not take into account also the flexibility and roughness of the cartilage, consider the flow in the gap articular surface caused by the approach of the bone, called the flow wyciskowym. Such passage shall take place eg when jumping or running. Size l occurring in formula (7.26) has a length dimension, h - the height of the gap. As previously stated, Kline and Allen [91] showed that L refers to the characteristic linear dimension of the molecular liquid. If we consider the synovial fluid, this parameter depends on the size of the molecules of the acid HA, that is: the longer the molecule, the greater the value of the parameter l, consequently, so a constant gap height h, the lower value of the parameter L.? Indeed, synovial fluid is the center of a polydisperse , that contains molecules of different lengths. However, to show the effect of long molecules, for simplicity consider the two extreme cases of synovial: 1) when the HA molecules are the maximum length, and 2) the HA molecule are of minimum length. In order to perform the calculations let's estimate the value of L for the slime flowing in the gap height h = 40 mm (the value adopted for the calculation), using these results Kline [91] and data on the maximum and minimum length HA molecules shown in A par The host? Ing that: lmin = dmin = 0.5 mm, Imax = dmax = 1 mm, we get values Lmin =? = H / lmin = 800, Lmax = h / Imax = 40 The values obtained computing capacity of the pond shown in Figure 7.4 are of a range of actual values. Experimental studies have shown that? (Depending on the movement phase) the pressure force of the hip is weight [221, 41, and literature therein]. For example, for a person weighing 70 kg obtain the value of the force during movement of the biołożysku ranging from 3500 N to N. The calculation results also indicate that if the husband has more molecules of HA, which is characterized by lower values micropolar model parameter L, we have a greater capacity and a longer time biołożyska approach the bone surface than in the case of smaller molecules synovial HA (characterized with higher values of the parameter L ). Notice also that biołożyska capacity increases with the increase in the value of the parameter N. As mentioned earlier, the increase in N may indicate an increase in the concentration of HA in the synovial fluid. obszar przepływowy modelujemy jako obszar między równoległymi płytkami; powierzchnia płytek odpowiada powierzchni smarowania w stawie, przepływ jest osiowosymetryczny, powierzchnia płytek jest twarda i nieprzepuszczalna; nie uwzględniamy też elastyczności i chropowatości chrząstki, rozpatrujemy przepływ w szczelinie stawowej, wywołany zbliżaniem się powierzchni kostnych, zwany przepływem wyciskowym. Taki przepływ ma miejsce np. podczas skoków czy biegu. Wielkość l występująca we wzorze (7.26) ma wymiar długości, h – wysokość szczeliny. Jak zostało wcześniej powiedziane, Kline i Allen [91] wykazali, że l określa charakterystyczny liniowy, molekularny wymiar płynu. Jeśli rozpatrujemy maź stawową, to parametr ten zależy od rozmiaru molekuł kwasu HA, czyli: im dłuższe molekuły, tym większa wartość parametru l, w konsekwencji więc przy stałej wysokości szczeliny h tym mniejsza wartość parametru L. W rzeczywistości maź stawowa jest ośrodkiem polidyspersyjnym, tzn. zawiera molekuły o różnej długości. Jednakże, aby uwidocznić efekt długości molekuł, rozpatrzmy dla uproszczenia dwa skrajne przypadki mazi: 1) gdy jej molekuły HA są maksymalnej długości oraz 2) gdy molekuły HA są minimalnej długości. W celu przeprowadzenia obliczeń oszacujmy wartości L dla mazi przepływającej w szczelinie o wysokości h = 40 mm (wartość przyjęta do obliczeń), wykorzystując wspomniane wyniki Kline’a [91] oraz dane dotyczące maksymalnej i minimalnej długości molekuły HA podane w podrozdz Przyjmu- jąc, że: lmin = dmin = 0.5 mm; lmax = dmax = 1 mm, otrzymujemy wartości: Lmin = = h/lmin = 800, Lmax = h/lmax = 40. Otrzymane wartości obliczeń nośności stawu przedstawione na rys. 7.4 są z zakresu wartości rzeczywistych. Badania eksperymentalne wykazały, że (w zależności od fazy ruchu) wartość siły nacisku w stawie biodrowym wynosi 50–200 wagi ciała [221, 41 i literatura tamże]. Na przykład dla osoby o wadze 70 kg otrzymujemy wartości działającej siły na biołożysku podczas ruchu wynoszące od 3500 N do N. Wyniki obliczeń wskazują również, że jeśli maź zawiera większe molekuły HA, co charakteryzowane jest w modelu mikropolarnym mniejszymi wartościami parametru L, to mamy większą nośność biołożyska oraz dłuższy czas zbliżania się powierzchni kostnych niż w wypadku mazi o mniejszych molekułach HA (charakteryzowanej większymi wartościami parametru L). Zauważmy też, że nośność biołożyska zwiększa się wraz ze wzrostem wartości parametru N. Jak wspomnieliśmy wcześniej, wzrost N może wskazywać na wzrost koncentracji HA w mazi. Effect legth of HA molecules on load N parameter N showing the synovial fluid concentrations of HA : L1, L2 - HA molecules long, L3, L4 - short molecules Lmin = h/lmin = 1000 Lmax = h/lmax = 90.
22
HA concentration effect on Synovial fluid rheology
23
Calculation of time approaching the surface of the bone s as a function of concentration and lenth of HA In the literature, e.g. [62, 140], it was shown that for a sick or older joints HA molecules have a lower molecular weight and the molecular chains are shorter. Then lower the load of a pond, a shorter approach the surface of bone causes pain. A lower molecular weight corresponds to the shorter length of the molecule that is referenced to a constant value of the gap h, resulting in a larger value of the parameter L. Bloch [23] showed that patients with rheumatoid arthritis inflammation lower the concentration of HA, which causes a decrease in capacity, and pain (shorter approach). This case can be characterized in micropolar model of synovial decreasing N. Effect of HA molecules on the surface of bone approaching time in biołożysku? Parameter N as a function of the synovial fluid: L1, L2 - HA molecules long, L3, L4 - short molecules
24
Calculation of load capacity as a function of temperature
Obliczone wielkości trybologiczne biołożyska pokazują, że nośność biołożyska i czas zbliżania [191] są największe w fizjologicznym zakresie temperatury biołożyska. Rezultat ten wydaje się istotny nie tylko ze względów poznawczych, ale i medycznych Nośność stawu biodrowego w funkcji parametru N dla pięciu wartości temperatury mazi
25
Conclusions The calculation of the tribological joint quatities obtained under micropolar model applied to synovial fluid are qualitatively consistent with clinical observations. Mikropolarny fluid model of synovial remains in compliance with confirmed experimentally LCD model synovial fluid both in terms of physics of liquid crystals, as well as mathematical description. Describes the synovial fluid phase transitions.
26
Thank you for your attention
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.