Presentation is loading. Please wait.

Presentation is loading. Please wait.

GP-Fileprints Ahmed Kattan, Edgar Galva n-Lo pez, Riccardo Poli and Michael O’Neill File Types Detection Using Genetic Programming A.I. Esparcia-Alcazar.

Similar presentations


Presentation on theme: "GP-Fileprints Ahmed Kattan, Edgar Galva n-Lo pez, Riccardo Poli and Michael O’Neill File Types Detection Using Genetic Programming A.I. Esparcia-Alcazar."— Presentation transcript:

1 GP-Fileprints Ahmed Kattan, Edgar Galva n-Lo pez, Riccardo Poli and Michael O’Neill File Types Detection Using Genetic Programming A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010

2 The Problem Information growth is exponential. Many file types. Different data have different structures. There are no universal standards for file types and there are thousands of file types. Increase security risk. JPGPDF A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 2

3 The solution Identify the file contents by analysing the raw binary streams and without the need of any other meta data! A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 3

4 Why this is useful ? Email spam filter. Virus detection. Forensic analysis. Network security. Quick hard disk scan. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 4

5 Some of the previous works McDaniel, M., Heydari, M.H.: Content based file type detection algorithms. In: HICSS 2003: Proceedings of the 36th Annual Hawaii International Conference on System Sciences (HICSS 2003) - Track 9, Washington, DC, USA, p. 332.1. IEEE Computer Society, Los Alamitos (2003) Proposed an approach for automatically generating “fingerprints” for files. Three algorithms to build fingerprints: 1.Byte Frequency Analysis (BFA). 2.Byte Frequency Cross-Correlation (BFC). 3.File Header/Trailer (FHT) algorithm. Experiments: (30 file-type fingerprints using four test files for each file) Results: They reported that BFA and BFC showed poor performance (i.e., an accuracy in the range of 27.5% and 45.83%) compared to FHT algorithm (which had an accuracy of 95.83%). A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 5

6 Some of the previous works Li, W.-J., Stolfo, S.J., Herzog, B.: Fileprints: Identifying file types by n-gram analysis. In: Proceedings of the 2005 IEEEWorkshop on Information Assurance, pp. 64–71 (2005). Proposed to analyse the data using n-grams to identify multiple centroids – fingerprints – for each file type. Three different techniques: 1.Truncation. 2.Multi-centroids. 3.Exemplar files. The authors reported some problems when classifying similar data types such as GIF and JPG. Also, some difficulties appeared when classifying PDF and MS office file types, as some embedded images and figures mislead the algorithms. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 6

7 Some of the previous works Karresand, M., Shahmehri, N.: Oscar – file type identification of binary data in disk clusters and ram pages. In: Security and Privacy in Dynamic Environments, pp. 413–424. Springer, Boston (2006) Proposed file type identification method called Oscar. For each data fragment they calculated: 1- Byte Frequency Distribution (BFD). 2- Mean 3- Standard deviation. When these measures are put together, they form a model which is used to identify unknown data fragments. Results: The authors reported that their approach, tested using only JPEG files, gave a 99.2% detection rate. The slowest implementation of the algorithm scans a 72.2MB in approximately 2.5 seconds and this scales linearly. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 7

8 None of the previous methods used evolutionary algorithms, including GP, to solve the problem of identifying file types from their raw binary streams. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 8

9 In this Research The question that we investigate is whether it is possible for GP to extract certain regularities from the raw byte-series of files and correlate them with particular data types without the need of any other meta data. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 9

10 The Approach Each individual has a multi-tree representation A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 10

11 Function set FunctionInput Median, Mean, Average deviation, Standard deviation, Vaiance, Skew, Kurtosis Entropy Vector of Integers (0-255) +, -, /, *, Sin, Cos, Sqrt, logReal number A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 11

12 Splitter tree The main job of the splitter trees is to split the given raw byte- series into smaller segments based on their statistical features in such a way that each segment is composed of statistically uniform data. Why ? Files with complex structures that store data of different types simultaneously. A single game file might contain executable code, text, pictures and background music. OpenOffice’s ODT, Microsoft’s DOCX or a ZIP file, are in fact archives containing inhomogeneous data. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 12

13 if fsplitter(prevWindows)−fsplitter (currWindows) > then Split else Move (S) //slide the window by S steps A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 13

14 Fileprint Tree The main job of the fileprint tree is to identify a unique signature for each file. These signatures are meant to be similar for files of the same type and different for files of different types. The outputs of the fileprint tree are easier to classify into different classes. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 14

15 Fileprint Tree Each segment Each file All training files GP-fileprint A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 15

16 Feature-extraction Trees The main job of the feature-extraction trees in our GP representation is to extract features from the GP- fingerprints identified by the fileprint tree and to project them onto a two-dimensional Euclidian space. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 16

17 Feature-extraction Trees XYXY GP-fileprint 1GP-fileprint 2 A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 17

18 Feature-extraction Trees A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 18

19 Feature-extraction Trees A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 EXE PDF 19

20 Fitness Evaluation Measure the classification accuracy of the training examples. Quality of the clusters: 1.Homogeneity. 2.Clusters separation. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 20

21 Homogeneity Label the clusters according to the dominant data type. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 Function rates Homogeneity i th Cluster Penalty value Total number of clusters 21

22 Cluster separation Modified Davis Bouldin Index (DBI) A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 Standard deviation Distance between cluster’s centiod and data members Distance between all cluster’s centiods 22

23 Classifying Unseen Data The final output is: Splitter tree. Fileprint tree. Two feature-extraction trees. Clusters’ members. Unseen data goes through the same process. New GP-fileprints are classified based on the majority class labels of their K-nearest neighbors. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 23

24 Search Operators For each tree in each individual Select an operator with predefined probability In the crossover, a restriction is applied so that splitter and fileprint trees can only be crossed over with their equivalent tree type. However, the system is able to freely crossover feature- extractions trees at any position. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 24

25 Experimental Setup ParameterValue Population size100 Generations30 Crossover50% Mutation50% Elitism20% Tournament size5 A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 25

26 Experimental Setup A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 Four parts 10 GP runs for each part. 10 different training files from each type. 30 different testing files from each type. 26

27 Results Same training sets. Same primitive sets as our GP system. For Neural Networks and Bayes Network systems we performed 10 different runs for each data set, as we did for our GP system. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 27

28 Results Summary A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 28

29 Conclusions A system based on genetic programming to evolve programs that can identify file contents without making use of any meta data has been proposed. The proposed system used multi-tree representation, each tree performed sub-task of the main job. The system used special technique to apply the search operators. Results outperformed other state of the art classification techniques. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 29

30 Conclusions The major disadvantage of the system is the slow training process (measured by hours). Resulting programs are entirely practical, being able to process tens of megabytes of data in seconds. The proposed algorithm can be trained according to the user needs. Identify files with special contents Pictures with illegal contents. EXE that perform illegal task on a network. Capture particular data on high traffic network. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 30

31 Future works Extend the work to larger and more varied data sets. Integrate solutions in spam filters and anti-virus software. Investigate different dimensions of feature-extraction trees. Try more sophisticated clustering techniques. A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 31

32 A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010. ©Springer-Verlag Berlin Heidelberg 2010 Thank you for paying attention! 32


Download ppt "GP-Fileprints Ahmed Kattan, Edgar Galva n-Lo pez, Riccardo Poli and Michael O’Neill File Types Detection Using Genetic Programming A.I. Esparcia-Alcazar."

Similar presentations


Ads by Google