Download presentation
Presentation is loading. Please wait.
Published byStanley Manning Modified over 8 years ago
1
Aim: How can we use the parallelogram method of adding vectors? Do Now: Find the resultant of the following vectors through graphical means: 90 m/s South 150 m/s East Scale: 1 cm = 30 m/s
2
N S WE
3
N S WE
4
N S WE
5
N S WE 90 m/s
6
N S WE
7
N S WE
8
N S WE 150 m/s
9
N S WE 90 m/s 150 m/s
10
N S WE 90 m/s 150 m/s
11
N S WE 90 m/s 150 m/s
12
N S WE 90 m/s 150 m/s
13
N S WE 5.8 cm x 30 90 m/s 150 m/s
14
N S WE 174 m/s 90 m/s 150 m/s
15
N S WE 174 m/s 90 m/s 150 m/s
16
N S WE 174 m/s 31° South of East 90 m/s 150 m/s
17
N S WE Now solve for the resultant mathematically 90 m/s 150 m/s
18
N S WE (90 m/s) 2 + (150 m/s) 2 = R 2 174.9 m/s = R 90 m/s 150 m/s
19
Two people pull on ropes attached to a box – one with a force of 350 N 35° West of South and one with a force of 420 N 45° South of East. Determine the resultant force on the box. Scale: 1 cm = 70 N
20
N S WE
21
N S WE
22
N S WE
23
N S WE
24
N S WE 35° 350 N
25
N S WE 35° 350 N
26
N S WE 35° 350 N
27
N S WE 35° 350 N
28
N S WE 35° 350 N 45° 420 N
29
N S WE 35° 350 N 45° 420 N
30
N S WE 35° 350 N 45° 420 N
31
N S WE 35° 350 N 45° 420 N
32
N S WE 35° 350 N 45° 420 N
33
N S WE 35° 350 N 45° 420 N
34
N S WE 35° 350 N 45° 420 N
35
N S WE 35° 350 N 45° 420 N
36
N S WE 35° 350 N 45° 420 N
37
N S WE 35° 350 N 45° 420 N Resultant
38
N S WE 35° 350 N 45° 420 N Resultant
39
N S WE 35° 350 N 45° 420 N 8.4 cm x 70 = 588 N Resultant
40
N S WE 35° 350 N 45° 420 N 588 N Resultant
41
N S WE 35° 350 N 45° 420 N 588 N80° South of East Resultant
42
N S WE 35° 350 N 45° 420 N 588 N80° South of East Resultant
43
N S WE 35° 350 N 45° 420 N Now Solve for the magnitude mathematically Use a derivation of the law of cosines R 2 = a 2 + b 2 + 2abcosθ Where θ is the angle between the 2 vectors θ
44
N WE 35° 350 N 45° 420 N R 2 = a 2 + b 2 + 2abcosθ R 2 = (350 N) 2 + (420 N) 2 + 2(350 N)(420 N)cos80 R = 591.6 N S
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.