Presentation is loading. Please wait.

Presentation is loading. Please wait.

Requirements for oxidative phosphorylation 1. An ion impermeable membrane 2.A mechanism for moving protons (H + ) across the membrane to produce an energy-rich.

Similar presentations


Presentation on theme: "Requirements for oxidative phosphorylation 1. An ion impermeable membrane 2.A mechanism for moving protons (H + ) across the membrane to produce an energy-rich."— Presentation transcript:

1 Requirements for oxidative phosphorylation 1. An ion impermeable membrane 2.A mechanism for moving protons (H + ) across the membrane to produce an energy-rich proton gradient 3.A mechanism to capture the energy made available as protons move down the proton gradient Requirements for the production of ATP

2 Requirements for oxidative phosphorylation 1. An ion impermeable membrane See Fig 14.6 in Horton

3 A typical representation of an electron transport chain. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.www.sinauer.comwww.whfreeman.com

4 Requirements for oxidative phosphorylation 2.A mechanism for moving protons (H + ) across the membrane to produce an energy-rich proton gradient Electron transport chain 44 2 4 2H +

5 H+H+ H H AMP NMN nicotinamide

6 H FMNH (semiquinone) H FMNH 2 (hydroquinone) H 1 5 Isoalloxazine -H +, -e - 2H + 2e -

7 H H FADH 2

8 - Semiquinone ( Q - ) H H Ubiquinol ( QH 2 ) Isoprenoid unit + 1 e -, +2H + + 1 e -

9 Non-heme iron sulfur proteins (Fe-S clusters) Cys Fe S SS S S S 2S -2Fe Cys FeS S S S S 4S -4Fe Fe S S S Cys

10 Cytochromes Heme-containing proteins Classified as a, b or c based on absorption spectrum Electron transport has: a and a 3, b 566 (b L ) and b 562 (b H ). and c and c 1 carry 1 electron per heme iron a, a 3, b 566,,, b 562,, and c 1 are integral membrane proteins c is a peripheral membrane protein on outer surface of inner mitochondrial membrane

11 Heme group of Cytochrome b Heme group in cytochromes See fig. 7-34 in Horton methyl proprionate

12 See fig. 7-34 in Horton Heme group in cytochromes a and c

13 See Fig 7-35 -Horton c  nm b  nm a  nm

14 Difference spectra = spectra of experimental– spectra of fully oxidized mito Normal Blocked between Cyt b and c 1 a and c fully oxidised b fully reduced b c a O 2

15 Substrate or complexE o’ (V) NADH-0.32 Complex I FMN Fe-S clusters -0.30 -0.25 - -0.05 Succinate+ 0.03 Complex II FAD Fe-S clusters 0.0 -0.26 – 0.00 QH 2 /Q+0.04 Complex III Fe-S clusters Cyt B 560 Cyt b 566 Cyt c 1 +0.28 - 0.1 + 0.05 + 0.22 Cytochrome c+ 0.23 Complex IV Cyt a Cu A Cyt a 3 Cu B + 0.21 + 0.24 + 0.39 + 0.34 O2O2 + 0.82 Standard redox potentials of mitochondrial oxidation-reduction components

16 Electron transport complexes Complex I: NADH-Q reductase  E 0' = + 0.32 V  G = -70 kJ/2e - Contains at least 34 polypeptides FMN, 2Fe-2S and 4Fe-4S clusters, tightly bound CoQ Mr = 880kD Result: 2 e - from NADH to CoQ 4 H + from matrix to intermembrane space NADH + H + + CoQ ox NADH + CoQH 2 FMN FMNH 2 Fe-S Q QH 2 2e - 2H + 4H + NADH + H + NAD matrix Intermembrane space

17 Complex II: succinate dehydrogenase/ succinate – Q reductase  E 0' = + 0.015 V  G = -2.9 kJ/2e - Contains: FAD, Fe_S Result: 2 e - from FADH 2 to CoQ No protons translocated FADH 2 + CoQ ox FADH + CoQH 2 FAD Fe-S Q QH 2 2e - 2 x e - 2H + succinate Fumarate + 2H + 2 x e - matrix Intermembrane space

18 Complex III: Cytochrome C reductase  E 0' = + 0.25 V  G = --37 kJ/2e - Contains: Cyt b (b L and b H ), Cyt c 1, Fe-S protein, several additional proteins Result: 2 e - from CoQH 2 to Cyt c 2 H + taken up from matrix, 4 H + to intermembrane space CoQH 2 + 2Cyt c (Fe +3 ) CoQ + 2Cyt c (Fe +2 ) 2H + 2 x e - c 4H + QH 2 Q 2H + matrix Intermembrane space

19 C1C1 bLbL Fe-S bHbH C1C1 bLbL bHbH C1C1 bLbL bHbH C1C1 bLbL bHbH CoQ cycle

20 Complex IV: Cytochrome oxidase  E 0' = + 0.57 V  G = -110 kJ/2e - Contains: 10 subunits, Cyt a and Cyt a 3, 2 Cu (A, B) Result: 4 e - from 4 Cyt c to form 2 H 2 O 8 H + taken up from matrix, 4 H + to intermembrane space 4Cyt c (Fe +2 ) + 4 H + + O 2 4Cyt c (Fe +3 ) + 2 H 2 O a - Cu A 1/2O 2 2 x e - 2H + 2 x e - c a 3 - Cu B 2H + H2OH2O matrix Intermembrane space

21 Cu 2+ Fe 3+ Cu + Fe 2+ Cytochrome oxidase: electron transfer to O 2 a3a3 Cu B Cu 2+ Fe 3+ O-O- O-O- Cu + Fe 3+ O-O- O-O- Cu 2+ Fe 3+ O-O- O- H Cu 2+ Fe 3+ OH -.. See Horton, fig 14.16

22 Electron transport chain ComplexMatrixIntramembrane space I-5+4 III-2+4 IV-4+2 II00 Summary of protons translocated per 2 e - Cplx I Cplx IV CoQ Cyt c e-e- 2H + + ½ O 2 H2OH2O NADH + H + NAD Cplx III H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

23

24 Paul D. Boyer John E. Walker Jens C. Skou "for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)" "for the first discovery of an ion-transporting enzyme, Na+, K+ -ATPase" 1997 Nobel Prize for Chemistry

25 ATP synthase These and the following images can be found at the home page of Boris A. FenioukBoris A. Feniouk (http://www.biologie.uni-osnabrueck.de/biophysik/Feniouk/Home.html) that contains a wealth ofhttp://www.biologie.uni-osnabrueck.de/biophysik/Feniouk/Home.html additional information on ATP synthesis. See also Horton p 450 and 451.

26

27 Binding-change mechanism (See page 451 in Horton) From: http://www.cse.ucsc.edu/~hongwang/ATP_synthase.html

28 http://www.res.titech.ac.jp/~seibutu/ For movies and details go to:

29 Cplx I Cplx IV CoQ c c e-e- 2H + + ½ O 2 H2OH2O NADH + H + NAD Cplx III H+H+ H+H+ H+H+ ATP synthase H+H+ ADP + PO 4 ATP H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+


Download ppt "Requirements for oxidative phosphorylation 1. An ion impermeable membrane 2.A mechanism for moving protons (H + ) across the membrane to produce an energy-rich."

Similar presentations


Ads by Google