Download presentation
Presentation is loading. Please wait.
Published byBernice Hunt Modified over 9 years ago
1
Semi-regular 3D mesh progressive compression and transmission based on an adaptive wavelet decomposition 21 st January 2009 Wavelet Applications in Industrial Processing VI IS&T/SPIE Symposium on Electronic Imaging C. ROUDET, F. DUPONT & A. BASKURT croudet, fdupont, abaskurt @liris.cnrs.fr
2
2 Context 3D objects Used in various applications Lots of different models Triangular meshes More and more detailed Adapted to heterogeneous resources Irregularly sampled
3
3 Triangular meshes 4 bytes x3 coordinates 4 bytes x3 indexes Mesh regularity Link to vertex valence (σ) V : {V i = (x i, y i, z i ) є R 3 / 0 ≤ i <|V|} F : {F i = j, k, l є Z 3 / 0 ≤ i <|F|} I - Context II - WT III – Our approach IV - Results irregular regular semi-regular Mesh M = (V, F) Geometry Connectivity Triangular mesh 36 bytes / vertex 288 bits / vertex 3 types of meshes : 1. irregular 2. semi-regular : W V | V i,V j є W : σ ( V i ) ≠ σ ( V j ) 3. regular : V i,V j є V : σ ( V i ) = σ ( V j ) ∩
4
4 Progressive representations Advantages : Efficient rendering Data adapted to heterogeneous devices and networks Various possible representations : Subdivision surfaces [Doo & Sabin, 78] + wavelets [Lounsbery, 97] ≈ 2 - 4 bits / v Irregular refinements [Hoppe, 96], [Gandoin & Devillers, 02] ≈ 2 bytes / v
5
5 Multiresolution analysis L 2 H L L H 1/4 1/2 f L H L H L H … details M0M0 M m-1 MmMm H [½ ½] [1 -1] 222222222
6
6 Geometric wavelets Filter bank generalization Spatial multiresolution analysis Advantages : Reduce computation costs Simplified filters Analysis & synthesis in linear time [Sweldens, 95] [Lounsbery, 97] S : Split P : Predict U : Update reconstructed signal coarse signal details signal even odd [Mallat, 89] coarse signal details signal reconstructed signal
7
7 MnMn M n-1 On meshes Update Predict even odd coarse signal details reconstructed signal
8
8 Overview of our approach CHANNELCHANNEL Global analysis Multiresolution segmentation Local analysis Local encoding Local decoding binary flow Remesh wavelet coefficients irregular 3D model semi-regular 3D model clusters patches Coarse gluing Local synthesis binary flow resolution levels Visualization Classification
9
9 A n-3 MnMn A n-2 A n-1 D n-1 D n-2 D n-3 Multiresolution representation Level n-1Level n-2Level n-3Level n-1 … Level n original 112 642 vertices 28 162 vertices 7 042 vertices 1 762 vertices Multiresolution weighting 01 Wavelet magnitude x10
10
10 Classification and region growing Magnitude Polar angle vertices Classification (K-means) 2 clusters Magnitude Polar angle Magnitude Polar angle vertices facets K=2 Region growing Global analysis Level n original Level n-1
11
11 Cluster « coarse » projection Coarse projection Region extraction Level n (original) Level n-1 Level n-5 Level n-2 … Level n-4Level n-5 Fine projection t0t0 t2t2
12
12 Cluster « fine » projection Initial classification Level n-2Level n-4 …Level n-5 Coarse projection Region extraction Level n (original) Level n-1 Level n-5 Fine projection
13
13
14
14 Different possible segmentations Multiresolution weighting on the finest approximation + « coarse » & « fine » projections Multiresolution weighting on the coarsest level + « fine » projection 5 regions 6 regions 5 regions 11 regions 9 regions
15
15 Independent analysis and coding CHANNELCHANNEL + Coding of partitioning information : nb regions, cluster type, filters used, … : losslessly compressed zerotree Connectivity Arithmetic coding symbol list 00110101 Quantization 110110 Geometry [Touma & Gotsman, 98] … [Khodakovsky et al., 00] Arithmetic coding Arithmetic coding symbol list Quantization [Touma & Gotsman, 98] Arithmetic coding Connectivity Geometry 01010001 100101
16
16 Global vs local analysis PSNR = 20.log 10 BBdiag / d BBdiag = Bounding Box diagonal d = Hausdorff distance Rate / distortion curves (unique prediction scheme used) Local analysis (2 nd weighting) additional cost Local analysis (1 st weighting) Global analysis Remeshing error Bitrate (bits / irregular vertex)
17
17 Progressivity of the reconstruction 0,23 bit / vertex 0,68 bit / vertex 1,66 bit / vertex 6,54 bit / vertex
18
18 Other applications Adaptive denoising & watermarking View-dependent transmission & reconstruction (ROI) Error-resilient coding e : error ( x 10 -4 ) Global analysis Classification Adaptive reconstructions: with prédiction without 554 KB e: 0,203 36% rough 218 KB e: 10,3 218 KB e: 17,4 11 967 bytes 5 181 bytes
19
19 Conclusion and future work Adaptive multiresolution framework Used to propose view-dependent transmission & visualization Based on a multiresolution segmentation Patch-independent analysis, quantization & encoding Future work: Design new prediction schemes adapted to non-smooth regions Optimize patch-quantization and binary allocation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.