Presentation is loading. Please wait.

Presentation is loading. Please wait.

ΞN interaction and Ξhypernuclei 1.ESC08c model and Kiso event (long history) 2.Ξ - mixing in neutron star (extremely large hypernucleus) Y. Yamamoto 2015/8/4.

Similar presentations


Presentation on theme: "ΞN interaction and Ξhypernuclei 1.ESC08c model and Kiso event (long history) 2.Ξ - mixing in neutron star (extremely large hypernucleus) Y. Yamamoto 2015/8/4."— Presentation transcript:

1 ΞN interaction and Ξhypernuclei 1.ESC08c model and Kiso event (long history) 2.Ξ - mixing in neutron star (extremely large hypernucleus) Y. Yamamoto 2015/8/4 JPARC

2 湯川理論 (1935) 坂田模型 (1955) pnΛ SU(3) 対称性 IOO 八道説 バリオンオクテット 武谷核力論 (1953) OBEP 斥力芯 ハイパー核発見 (1952) ハイパー核と YN 相互作用 観点 (1990) BB 相互作用模型 Nijmegen(from 197x)

3 Baryon octet Meson nonet PS mesons

4 SU(3) invariant Yukawa interaction independent constants g oct, g sin, α, (mixing angle θ)

5 以上は古い素粒子論の教科書に書いてある話 Parameter fitting for NN & YN scattering data Nijmegen group from 1970’s after that long long history to ESC08c

6 Parameters in ND/NF: g 8, g 1, α, θ 4×4=16 parameters for pseudo-scalar mesons vector mesons (two terms) scalar mesons & hard-core radii Nijmegen group Continuous Studies by Nijmegen group since 1970’s Parameter fitting with complementary use of (rich) NN and (scarce) YN scattering data

7 Special modeling in ND related to attractive ΞN interaction not taken

8

9 Hard Core model は最初の一歩、核力屋の練習台 Soft Core model==> 模型の構築 (ω, pomeron, QM, etc) ND は HC 故の現象論的性質(融通無碍) によって長々と生き延びたが もはや歴史博物館に収納 ND が長命になった理由の一つは引力的 U Ξ の模型構築が 極めて困難であったことである Features of ND giving attractive U Ξ * special modeling for scalar mesons * σ meson dominant attraction (universal in all channels) * Wigner type (weak exchange interaction) Long history to find mechanism of attractive U Ξ in ESC modeling quite difficult

10 Quark-core and U Σ / U Ξ problem U Σ U Ξ Experimentally repulsive weakly attractive NSC89/97 attractive strongly repulsive ESC04a strongly attractive weakly attractive ESC04d strongly attractive strongly attractive ESC08a/b strongly repulsive strongly attractive ESC08c moderately repulsive weakly attractive Quark-core effect Long history ~ 25 years !!!

11 Ξ-hypernuclei and ΞN interaction in emulsion

12 Mondal, et al., Nuovo Cimento 54 (1979) 333 有史以前のデータ no Ξ - can be seen

13 U WS =-24 MeV (有史以前のパラダイム)

14 E176 events of twin Λ hypernuclei Ξ - 吸収によるダブルストレンジネス・ エマルジョン実験の問題点 Ξ - がどの軌道から吸収されたか分からない 一般的にイベントはユニークに同定できな い Λ- or ΛΛ-fragments は励起状態であり得る 複数のイベント・解釈から consistent solution を見つけ る

15 Twin の最初のドラフトのタイトルは Ξ ハイパー核の生成 Atomic Ξ - cascade では 1S まで落ちない 2P

16 Coulomb -bound Coulomb -assisted

17 E176 events 2P 吸収で consistent understanding, but 3D 吸収の可能性は否定しきれない!

18 P.T.P. Suppl.117 (1994) Y.Yamamoto, T.Motoba, T.Fukuda, M.Takahashi, K.Ikeda U WS =-24, -16, -12, -8 MeV D.J.Millener, C.B.Dover, A.Gal U WS =-24 MeV E885 T. Fukuda, et al., Phys. Rev. C58 (1998), 1306. P.~Khaustov et al., Phys. Rev. C61 (2000), 054603 U WS =-14 MeV. U WS ??? Twin E176 1993 neglect

19 Twin events を使った唯一の (?) 理論の論文

20 Y-nucleus folding potential derived from YN G-matrix interaction G(r; k F ) Averaged-k F Approximation G-matrix interactions Mixed densityobtained from SkHF w.f. calculated self-consistently

21

22 横浜イベント 木曽イベント !!!!! prediction Recent : 0.82 +- 0.17 MeV

23 WS pot (-18.3) Ehime 1S 8.00 5.10 2P 0.82 0.82 E176 1S 9.21 5.45 2P 1.61 1.17 Kiso event WS potential の予言性は低い

24 KISO event

25 木曽イベント Some possibilities

26 Extended Soft-Core Model (ESC) ●Two-meson exchange processes are treated explicitly ● Meson-Baryon coupling constants are taken consistently with Quark-Pair Creation model repulsive cores ΞN のみ調節する パラメータはない

27 spin singlet spin triplet

28

29 . S 12 =0 Why is U Ξ so attractive ? It’s due to tensor force T=0 3 S 1 : ΞN T=1 3 S 1 : ΞN-ΛΣ-ΣΣ existence of S=-2 deuteron as well as NN and ΛN-ΣN U Λ (T=1/2 3 S 1 ) -21.2 +18.9 : ΛN-ΣN tensor 1.56 MeV

30 Origin of strong tensor force in ESC08c π exchange (ΞN-ΞN) K exchange (ΞN-ΛΣ) Vector & Axial vector exchange Meson-pair exchange

31 G-matrix folding model model EXP ESC08c(ΞN) は適切な 引力を与える

32 Various Ξ - nuclear bound states are produced by (K -,K + ) reactions ! (K -,K + ) reactions lead to neutron-rich systems from available targets

33 Cascade calculation  dominantly from 3d and 4f a few % from 2p by Koike & Akaishi なぜ 2P Ξ - bound states ばかり見つかるのか?

34 Ξ - 吸収によるダブルストレンジネス・エマルジョン実験 * Ξ - がどの軌道から吸収されたか分からない *一般的にイベントはユニークに同定できない * Λ- or ΛΛ-fragments は励起状態であり得る 2P-Ξ - absorption scenario 複数のイベント・解釈から consistent solution を見つける a consistent solution from some interpretations of events

35

36

37 Deep hole state  cancelling of Δ

38 double-Λ sticking

39 2p- 吸収による double-Λ sticking の確率は 3d- 吸収の 3 倍

40

41 Double-Λ sticking from Ξ-absorption through s-hole process 2p Ξ  s Λ p Λ  double-Λ sticking 3d Ξ  p Λ p Λ p Λ p Λ sticking state から double-Λ fragment や twin Λ fragments への 崩壊確率は小さいであろう

42 Hyperon mixing in neutron-star matter Ξ - mixing ?

43 Massive (2M ☉ ) neutron stars Softening of EOS by hyperon mixing Hyperon puzzle ! Our conclusion : The puzzle can be solved by Universal Three-Baryon Repulsion on the basis of terrestrial data 2010 PSR J1614-2230 (1.97±0.04)M ☉ 2013 PSR J0348-0432 (2.01±0.04)M ☉ ?

44 Lagrangian in Baryon-Meson system interaction models two + three-body NN ・ YN scattering Many-body phenom. Nuclear saturation properties EOS in neutron-star matter RMFRMF no parameter as possible adjustable parameters RMF ours Earth-based experiments Based on BHF theory Bridge from “micro” to “macro”

45 Nijmegen Extended Soft-Core Model (ESC) repulsive cores Our story to neutron-star matter starts from the BB interaction model SU 3 invariant (NN and YN) interaction

46 SU 3 scalar universal repulsion Pomeron is a model for multi-gluon exchange gPgP g 3P Naturally extended 2-body repulsion

47 Multi-Pomeron Exchange Potential (MPP) The same repulsions in all baryonic channels NNN, NNY, NYY, YYY A model of Universal Three-Baryon Repulsion Three-Nucleon attraction (TNA) phenomenological Both MPP and TNA are needed to reproduce nuclear saturation property but, essential is MPP for Nucleus-Nucleus scattering data Effective two-body potential from MPP (3- & 4-body potentials) density-dependent two-body attraction

48 Three parameter sets 4-body

49 How to determine coupling constants g 3P and g 4P ? Nucleus-Nucleus scattering data with G-matrix folding potential r1r1 r2r2 v NN (s) Double Folding Frozen-Density Approximation ρ=ρ 1 +ρ 2 Two Fermi-spheres separated in momentum space can overlap in coordinate space without disturbance of Pauli principle

50 16 O + 16 O elastic scattering cross section at E/A = 70 MeV Solid MPa Dashed MPa + Dotted MPb ESC Planned experiments (Tanihata et al.) : 12 C+ 12 C@E/A=200, 300, 400 MeV

51 E/A curves MPa/MPa + including 3- and 4-body MPP : MPb including 3-body MPP only K value(MeV) MPa + 313 MPa 283 MPb 254 4-body repulsion

52 No ad hoc parameter to adjust stiffness of EOS by solving TOV eq. K value(MeV) MPa + 313 MPa 283 MPb 254 with n+p β-stable matter 4-body repulsion

53 Hyperon-Mixed Neutron-Star Matter using YN & YY interaction model ESC08c ESC08c consistent with almost all experimental data of hypernuclei (S=-1,-2) MPP MPP universal in all BB channels TBA TBA given in S=0 channel  ? in S=-1,-2 channel (ESC+MPP+TBA) model should be tested in hypernuclei hyperonic sector Experimental data of B Λ reproduced Choosing TBA=TNA

54 MPa is better than ESC !!! no adjustable parameter G-matrix folding model Existence of three-body force effect

55 ESC Reproducing all features in S=0,-1,-2 systems consistently s.p. potentials for MPa in neutron matter Ξ - bound state (Kiso event in emulsion) MPP & TBA cancel with each other around normal density region features of ESC remain

56

57 28 Si (π -,K + ) strength function U Ξ =1.5 MeV の G-matrix folding potential が U Ξ =20-30 MeV の Woods-Saxon potential と似た結果を与える

58 Hyperon-mixed Neutron-Star matter with universal TBR (MPP) ESC(YN) + MPP(YNN) +TBA(YNN) EoS of n+p+Λ+Σ+e+μ system

59 Energy density

60

61 Hyperon-mixed neutron-star matter Λ Σ-Λ Σ- Softening of EOS by hyperon mixing

62 PSR J1614-2230 Maximum mass for MPb (no 4-body repulsion) is less than 2M solar In spite of softening of EOS, 2M solar is still obtained

63 Ξ - mixing

64 Maximum mass is not changed by Ξ - mixing

65 Conclusion ESC+MPP+TBA model * MPP strength determined by analysis for 16 O+ 16 O scattering * TNA adjusted phenomenologically to reproduce saturation properties * Consistent with hypernuclear data * No ad hoc parameter to stiffen EOS MPa/MPa + set including 3- and 4-body repulsions leads to massive neutron stars with 2M ☉ in spite of significant softening of EOS by hyperon mixing MPb including 3-body repulsion leads to slightly smaller value than 2M ☉ quantitatively Ξ - mixing does not change the maximum mass when (MPP+TBA) is added to ΞN interaction


Download ppt "ΞN interaction and Ξhypernuclei 1.ESC08c model and Kiso event (long history) 2.Ξ - mixing in neutron star (extremely large hypernucleus) Y. Yamamoto 2015/8/4."

Similar presentations


Ads by Google