Presentation is loading. Please wait.

Presentation is loading. Please wait.

Pure Bending of Straight Symmetrical Beams

Similar presentations


Presentation on theme: "Pure Bending of Straight Symmetrical Beams"— Presentation transcript:

1

2 Pure Bending of Straight Symmetrical Beams
Linear bending stress distribution, and no shear stress (Fig. 4.3) Neutral axis passes through centroid of cross-section Section modulus, Z=I/c, used for the case when the neutral axis is also a symmetry axis for the cross-section Table 4.2 for properties of plane sections Restrictions to straight, homogeneous beams loaded in elastic range and cutting planes sufficiently far from discontinuities

3

4

5

6

7 Bending of Straight Symmetrical Beams Under Transverse Forces
Any cut cross-section loaded by two types of stresses (if no torsion occurs): Bending stress as in case of pure bending Transverse shear stresses Direct and transverse shear stress Direct average shear stress in pin and clevis joint (Fig. 4.4) is smaller than maximum stress Non-linear distributions are caused in reality by stiffnesses and fits between mating members, etc.

8

9

10 Transverse Shear Stress Equations
Bending of laminated beam explains existence of transverse shear (Fig. 4.5) Beam loaded in a vertical plane of symmetry Elemental slab in equilibrium under differential bending and shear forces (Fig. 4.6) Derived equation valid for any cross-sectional shape Expressed in terms of “moment of area” about neutral axis, leading to the “area moment” method for calculating transverse shearing stresses Irregular cross-sections can be divided into regular parts (4-25)

11 Transverse Shear Stress Equations
Stress distribution in section at “z” at distance y1 from neutral axis Area Moment method for calculating transverse shear stresses Irregular Cross-Section

12

13 Conclusions on Transverse Shearing Stress Calculations
Maximum Value at Neutral Axis Depends on Shape of Cross Section (Table 4.3) Equal to Zero at Top and Bottom Boundaries Important for Short Beams Wood Beams – if span/depth < 24 Metal Beams with Thin Webs- if span/depth<15 Metal Beams with Solid Section-if span/depth<8

14

15

16

17

18 MAE 343-Intermediate Mechanics of Materials Homework No
MAE 343-Intermediate Mechanics of Materials Homework No. 2 - Thursday, Sep. 02, 2004 1) Textbook problems required on Thursday, Sep. 9, 2004: Problems 4.10 and 4.15 2) Textbook problems recommended for practice before Sep. 9, 2004: Problems 4.7 – (except 4.10 and 4.15)


Download ppt "Pure Bending of Straight Symmetrical Beams"

Similar presentations


Ads by Google