Download presentation
Presentation is loading. Please wait.
Published byElinor Banks Modified over 8 years ago
1
Procrustes Analysis and Its Application in Computer Graphics Speaker: Lei Zhang 2008/10/08
2
What is Procrustes Analysis Wikipedia 削足适履 Procrustes analysis is the name for the process of performing a shape-preserving Euclidean transformation. Procrustes [ pr ə u’kr Λ sti:z ] Procrustean
3
Procrustes Problem Given
4
Procrustes Problem Given, find
5
Procrustes Problem Given, find
6
Procrustes Problem Orthogonal Procrustes Problem (OPP) Given P. H. Schoenemann. A generalized solution of the orthogonal Procrustes problem. 1966.
7
Procrustes Problem Extended Orthogonal Procrustes Problem Given P. H. Schoenemann, R. Carroll. Fitting one matrix to another under choice of a central dilation and a rigid motion. 1970.
8
Procrustes Problem Rotation Orthogonal Procrustes Problem Given G. Wahba. A least squares estimate of satellite attitude. 1966.
9
Procrustes Problem Permutation Procrustes Problem (PPP) Given J. C. Gower. Multivariate analysis: ordination, multidimensional scaling and allied topics. 1984.
10
Procrustes Problem Symmetric Procrustes Problem (SPP) Given H. J. Larson. Least squares estimation of the components of a symmetric matrix. 1966.
11
Who is Procrustes Greek Mythology –One who stretches –A.k.a Polypemon –A.k.a Damastes Theseus Poseidon
12
Peter H. Schonemann Professor At Department of Psychological Science, Purdue University P. H. Schoenemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 1966. J. C. Gower, G. B. Dijksterhuis. Procrustes problems. Oxford University Press, 2004.
13
Applications Factor analysis, statistic Satellite tracking Rigid body movement in robotics Structural and system identification Computer graphics Sensor Networks
14
Reference Olga Sorkine, Marc Alexa. As-rigid-as-possible surface modeling. SGP 2007. M. B. Stegmann, D. D. Gomez. A brief introduction to statistical shape analysis. Lecture notes. Denmark Technical University. Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, Steven J. Gorlter. A local/global approach to mesh parameterization. SGP 2008. Lei Zhang, Ligang Liu, Guojin Wang. Meshless parameterization by rigid alignment and surface reconstruction. 2008 Lei Zhang, Ligang Liu, Craig Gotsman, Steven J. Gorlter. An as- rigid-as-possible approach to sensor networks localization. Submitted to IEEE INFOCOM 2009.
15
Shape Deformation
16
Good Shape Deformation Smooth effect on the large scale approximation Preserve detail on the local structure
17
Direct Local Structure Small-sized Cells –Smooth surface
18
Direct Local Structure Small-sized Cells –Discrete surface
19
Direct Detail Preserve Shape-preserving transformation
20
Rotation Transformation
21
Rotation Orthogonal Procrustes Problem
22
Procrustes Analysis
23
S igular V alue D ecomposition
24
Procrustes Analysis S igular V alue D ecomposition
25
Local Rigidity Energy
26
b is known, calculate R by Procrustes analysis R is known, calculate b by least-squares optimization (Laplace equation)
27
Alternating Least-squares Initial guess 1 iterationFinal result b is known, calculate R by Procrustes analysis R is known, calculate b by least-squares optimization (Laplace equation)
28
Results Procrustes in shape deformation
29
Shape Registration
30
What is Shape Shape is all the geometrical information that remains when location, scale and rotational effects are filtered out from an object. --I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. 1998
31
Shape Representation Landmarks
32
Shape Registration Euclidean transformation Translation Similarity Rotation Landmark correspondence
33
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
34
GPA Translation
35
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
36
GPA Similarity
37
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
38
GPA Rotation Rotation Orthogonal Procrustes Problem
39
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
40
GPA Calculate new mean shape
41
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
42
Results Procrustes in shape analysis
43
Mesh Parameterization
44
Problem Setting 3D mesh2D parameterization Keep distortion as minimal as possible
45
Distortion Measure is Jacobian of, is singular value of 1. Angle-preserving (i.e. conformal mapping) 2. Area-preserving (i.e. authalic mapping) 3. Shape-preserving (i.e. isometric mapping) Floater, M. S. and Hormann, K. Surface parameterization: a tutorial and survey. 2004
46
Distortion Measure Conformal mappingAuthalic mapping isometric mapping = conformal + authalic
47
3D mesh2D parameterization Reference triangles isometric
48
Procrustes Analysis Reference triangle2D parameterization Procrustes Problem Isometric Conformal Authalic
49
Procrustes Analysis isometricconformalauthalic
50
Shape-preserving isometric transformation Rotation Orthogonal Procrustes Problem
51
Angle-preserving Similarity Procrustes Problem conformal transformation
52
Area-preserving Procrustes Problem Authalic transformation
53
Parameterization Shape : as-rigid-as-possible parameterization (ARAP) Angle: as-similar-as-possible parameterization (ASAP) Area: as-authalic-as-possible parameterization (AAAP) Alternating least - squares ( ALS )
54
Model A R APA S APA A AP
55
ASAP vs. ARAP A S AP A R AP
56
Insight ASAP ARAP *Equivalent to LSCM: Levy, B., et al. Least squares conformal maps for atutomatic texture atlas generation. Siggraph 2002.
57
Comparison [HG99] MIPS: an efficient global parameterization method. In Proc. Of Curves and Surfaces. [DMK03] An adaptable surface parameterization method. In Proc. Of 12 th International Meshing Roundtable.
58
ASAP: 2.00 88.14 ARAP: 2.06 2.05 ABF: 2.00 2.64 IC: 2.05 2.67CP: 2.00 2.64 ABF: Sheffa, et al, TOG, 2005 IC: Gu, et al, TVCG, 2008 CP: Gotsman, et al, EG 2008
59
ASAP: 2.05 15.4 ARAP: 2.19 2.11 ABF: 2.12 9.12 IC: 3.09 3.91CP: 2.29 11.9 ABF: Sheffa, et al, TOG, 2005 IC: Gu, et al, TVCG, 2008 CP: Gotsman, et al, EG 2008
60
ABF: 2.00 2.09 ARAP: 2.01 2.01 Procrustes in parameterization
61
Surface Reconstruction
62
Problem Setting Points SetReconstruction
63
Meshless Parameterization Points Set Reconstruction Parameterization Delaunay triangulation
64
Local Tangent Flattening
65
Rigid Alignment F o r e a c h p o i n t Rotation Orthogonal Procrustes Problem
66
Parameterization Alternating Least Squares B is known, calculate R by Procrustes analysis R is known, calculate B by least-squares optimization (Laplace equation)
67
Initialization Affine Alignment Linear least-squares w.r.t A and a, b, c, d
68
Affine Alignment Points Set Affine alignment
69
Rigid alignment Affine alignment
70
Delaunay Triangulation Remove redundant triangle
71
Results Floater, et al, CAGD, 2001Roweis, et al, Science, 2001Our approach
72
Texture Mapping Floater, et al, CAGD, 2001Roweis, et al, Science, 2001Our approach
73
Floater, et al, CAGD, 2001Roweis, et al, Science, 2001Our approach
74
Texture Mapping Floater, et al, CAGD, 2001Roweis, et al, Science, 2001Our approach Procrustes in surface reconstruction
75
Summary Procrustes Analysis –Euclidean transformation –Direct estimate of shape transformation –Versatile Shape deformation Shape analysis Mesh parameterization Surface reconstruction ……
76
Thanks for your attention!
77
Q&A
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.