Presentation is loading. Please wait.

Presentation is loading. Please wait.

GPM May 21, 2002 Eric A. Smith 1 2nd International Planning Workshop on GPM Eric A. Smith;

Similar presentations


Presentation on theme: "GPM May 21, 2002 Eric A. Smith 1 2nd International Planning Workshop on GPM Eric A. Smith;"— Presentation transcript:

1 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 1 2nd International Planning Workshop on GPM Eric A. Smith; NASA/Goddard Space Flight Center, Greenbelt, MD 20771 [tel: 301-286-5770; fax: 301-286-1626; easmith@pop900.gsfc.nasa.gov; http://gpmscience.gsfc.nasa.gov] May 20-22, 2002; Shinagawa Prince Hotel, Tokyo, Japan Global Precipitation Measurement (GPM) Mission An International Partnership & Precipitation Satellite Constellation for Research on Global Water & Energy Cycle Overview of NASA’s Science Agenda for GPM Mission

2 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 2 Water and climate Water and climate Water and food Water and food Water quality and human health Water quality and human health Water and environment Water and environment Water and conflict Water and conflict ENSO-Precipitation Links Hydrologic Management Water and Life

3 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 3 GPM Reference Concept Core Satellite TRMM-Like S/C, NASA H2-A Launch, NASDA Non-Sun Synchronous Orbit ~ 65° Inclination ~450 km Altitude Dual Frequency Radar, NASDA Ku & Ka Bands ~ 4 km Horizontal Resolution ~250 m Vertical Resolution Multifrequency Radiometer, NASA 10.7, 19, 22, 37, 85, 150 GHz V&H Constellation Satellites Dedicated Small or Pre-existing Experimental & Operational Satellites with PMW Radiometers Revisit Time 3-Hour goal Sun- & Non-Sun- Synch Polar Orbits ~600 km Altitude OBJECTIVES  Understand Horizontal & Vertical Structure of Rainfall, its Microphysical Nature, & Associated Latent Heating  Train & Calibrate Algorithms for Constellation Radiometers OBJECTIVES  Provide Sufficient Global Sampling to Reduce Uncertainty in Short- Term Rainfall Accumulations  Extend Scientific and Societal Applications Global Precipitation Processing Center Produces Global Precipitation Data Product Streams Defined by GPM Partners Precipitation Validation Sites Selected & Globally Distributed Ground- Based Supersites (Multiparameter radar, up looking radiometer/radar/profiler, raingages, & disdrometers) Dense Regional Raingage Networks

4 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 4 Improved Climate Predictions: through progress in quantifying trends & space-time variations of rainfall & associated error bars in conjunction with improvements in achieving water budget closure from low to high latitudes -- plus focused GCM research on advanced understanding of relationship between rain microphysics/latent heating/DSD properties & climate variations as mediated by accompanying accelerations of both atmospheric & surface branches of global water cycle. Improved Weather Predictions: through accurate, precise, frequent & globally distributed measurements of instantaneous rainrate & latent heat release -- plus focused research on more advanced NWP techniques in satellite precipitation assimilation & error characterization of precipitation retrievals. Improved Hydrological Predictions: through frequent sampling & complete continental coverage of high resolution precipitation measurements including snowfall -- plus focused research on more innovative designs in hydrometeorological modeling emphasizing hazardous flood forecasting, seasonal draught-flood outlooks, & fresh water resources prediction. GPM Mission is Being Formulated within Context of Global Water & Energy Cycle with Foremost Science Goals Focusing On

5 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 5 Status of Working Group Workshops & Preparation of Chapters for GPM Draft Science Implementation Plan Name of GroupLeadsWSChap 1.Water CycleE. Wood TBD yes 2.Climate DiagnosticsP. Robertsonyesyes 3.Modeling & Data AssimilationA. Houyesyes 4.HydrometeorologyH. Cooper yes (vir) yes 5.Ocean Fluxes & Marine ABLV. Mehta yes (vir) yes 6.Coupled Cloud-Radiation ModelingG. Tripoli / W. Tao Jul '02 yes 7a.Core Satellite Reference AlgorithmZ. Haddadyesyes 7b.Rain Radiometer Parametric AlgorithmC. Kummerowyes yes 7c.Cross Calibration & Blended AlgorithmsE. Smithyes yes 8.Ground Validation & Field ExperimentsS. Yuter / R. Houzeyes yes 9.Forecast Apps, TV, Education, & OutreachM. Shepherdyes yes 10.Boiler Plate A. Mehta / M. Shepherd / E. Smith N/A90%

6 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 6 Document Status [http://gpmscience.gsfc.nasa.gov] NASA GPM Report Series (Smith & Adams, eds)  Summary of 1st GPM Partners Planning WorkshopShepherd, Mehta, Smithprinted   Benefits to Partnering with GPM MissionStockerprinted   Scientific Assessment of High-FrequencyLiu & Flamingin press Radiometer Channels on GPM Core Satellite for Warm and Light Rain plus Snow Measurement   Scientific Assessment of Cross-Track STARWilheit & Everettin press Radiometer Flown Bore-Sighted with Dual-Frequency Radar on GPM Core Satellite   Potential Tropical Open Ocean PrecipitationAdkins & Yuterprinted Validation Sites 6 Description of Global Precipitation MeasurementSmith, Mehta, Shepherdin review (GPM) Mission 7 Bridging from TRMM to GPM to 3-HourlyShepherd & Smithprinted Precipitation Estimates 8 Description of GPM ProjectAdams et alin review 9 GPM Core Satellite Trade Space AnalysisEverett et aldraft form Additional Publications 1. The Global Precipitation Measurement (GPM) MissionSmith et alPlinius 3 2. Potential Applications of LRR-STAR TechnologySmith et alESTC-2 for GPM Mission 3 Draft GPM Science Implementation Plan (SIP)Smith (editor)very rough draft

7 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 7 TBD b (GMI / DPR) GPM Core DMSP-F18/20 DMSP-F19 GCOM-B1 (SSMIS) (AMSR-FO) N-GPM E-GPM FY-3 (EPMR / NPR) Reference Co-Op Drone Partners NPOESS-1 NPOESS-2 NPOESS-3 (CMIS) MEGHA TROPIQUES (MADRAS) Potential New Drones/Partners Currently Conceived Constellation Architecture NPOESS-Lite (CMIS) (CPMR) (NPMR) TRMM AQUA ADEOS-IIDMSP-F17 DMSP-F16

8 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 8 GPM: Constellation Mission of Opportunity & Good Citizenship SatelliteMain PurposeValue to GPM Mission 1.GPM CoreGPM rain referencecalibration, rain physics, [NASA/NASDA]systemtropical-midlatitude sampling 2 & 3.DMSPUS: NOAA/DOD met-ops & resglobal sampling [IPO] 4.NPOESS-LiteUS: NOAA/DOD met-ops & resglobal sampling [IPO] 5.GCOM-B1Japan: environ/hydro resglobal sampling [NASDA]& JMA met-ops 6.E-GPMEU: cold seasons/flash flood/data-assim resrain physics, frozen [ESA (ASI/CNES/EC) ] & EU met-opsprecip, global sampling 7.N-GPMUS: MW radiometer technology testbedglobal sampling [NASA] 8.Megha TropiquesIndia/France: IO monsoon restropical sampling [ISRO/CNES]& IMD met-ops 9.FY-3China: CMA met-ops & resglobal sampling [CSM]

9 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 9 Improving Precipitation Retrievals Cloud Macrophysical & Microphysical Fundamentals Determination of: drop size distribution [DSD(r)], mass mixing ratio [q(z) hydro(r) ], rain mass flux [F r (z)], fall velocity [w(z) hydro(r) ], & latent heating [LH(z) ] q(z) hydro(r) =  w ( 4/3  r 3 ) DSD(r) w(z) hydro(r) = GFO [q(z) hydro(r) ] F r (z) = ∫ q(z) hydro(r) w(z) hydro(r) dr LH(z) = C [∂ F r (z)/∂z] RR (z) = F r (z) /  w RF sur = RR(z sur ) ∑  t Implementation of Fully Modular OPEN ACCESS Facility Algorithms Accompanied by COMPREHENSIVE TESTING Capability within WPDC

10 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 10 TRMM & GPM Rainrate Retrieval Simulations Under Varying Mean Adj Drop Diameter Profiles [ simulations based on Monte Carlo proliferation of Hurricane Bonnie observations ] TRMM Single-Frequency Algorithm (bias due to unretrievable DSD variability) exact variability depends on DSD variability in altitude Standard Deviation of R (%) as Function of R in mm hr -1 ) with R approximately log-normal then  R proportional to R GPM Dual-Frequency Algorithm (near-zero bias & reduced scatter in mid-range) Actual R (mm hr -1 ) R e t r i e v e d R (mm hr -1 ) Percent Actual R (mm hr -1 ) GPM TRMM ~12.5 mm hr -1 ~1.5 mm hr -1

11 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 11 x-z cross-section of Snow at 89.0 & 157.0 GHz 157 GHz 89 GHz Precipitating Snow x-axis (km) 60 80 100 120 140 160 180 8 6 4 2 0 z-axis (km) 8 6 4 2 0 z-axis (km)

12 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 12  Validation should be treated as important as retrieval because improved prediction depends on it.  Error characterization of satellite precipitation retrievals is needed to support: (a) Algorithm Improvement -- for reducing bias & precision errors in retrieved precipitation estimates; (b) Climate Diagnostic Analysis -- for assessing physical significance of trends/variations in observed precipitation time series; (c) Data Assimilation -- for improving climate reanalyses, numerical weather prediction, & hydrometeorological forecasting. (d) Validation Research -- for advancing validation techniques, validation measuring systems, & space instrumentation. Validation Expectations from Research &Operations End Users

13 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 13 GPM Validation Strategy Tropical Continental Confidence sanity checks GPM Satellite Data Streams Continuous Synthesis  error variances  precip trends Calibration Mid-Lat Continental Tropical Oceanic Extratropical Baroclinic High Latitude Snow Research Quality Data Algorithm Improvements Research  cloud macrophysics  cloud microphysics  cloud-radiation modeling FC Data Supersite Products II. GPM Supersites  Basic Rainfall Validation hi-lo res gauge/disdrometer networks polarametric Radar system  Accurate Physical Validation scientists & technicians staff data acquisition & computer facility meteorological sensor system upfacing multifreq radiometer system D o /DSD variability/vertical structure convective/stratiform partitioning III. GPM Field Campaigns  GPM Supersites cloud/ precip/radiation/dynamics processes  GPM Alg Problem/Bias Regions targeted to specific problems I. Basic Rainfall Validation  Raingauges/Radars new/existing gauge networks new/existing radar networks

14 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 14 Is Water Cycle Accelerating?

15 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 15 Horizontal & Vertical Winds in Tropical Cyclone Bonnie Impact of TMI Rain Assimilation on Tropical Cyclone Dynamics J.-F. Mahfouf ECMWF

16 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 16 Example for Weather Prediction Cloud Resolving Model Simulations from UW-NMS for Establishing Cloud-Radiation Relationships Middle-Latitude Cyclone Supercell Thunderstorm Alps Orographic-Convective Storm Explicit Convection in Hurricane Bonnie Lake-Effects Roll Convection

17 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 17 Piemonte - 2000 Simulation of Low-Level Flows within Tyrrhenian, Ligurian, Ionian, & Adriatic Seas white (surface) -- orange (1.5 km) Friuli - 1998 Amplifying Mesoscale Storms Arising within Mobile Westerly Disturbances under Control of Fixed Geography & Orography 35/50 m s -1 jet cores; 5 km MSL isobars (2 mb); surface temperature Inflow Cross-Section Surface  e (shaded) Stable Brunt-Vaisalla Frequency (dark shading) Genova - 1992 Barrier Convergence Zone ∑ surface flow convergence set up off-shore ∑ due to flow normal to high alps terrain ∑ flow surge lifted over convergence zone off-shore (335  e surface) Surging EML ==> Elevated Mixed Layer 3 km MSL Brunt Vaisala Frequency Better Flood Predictions: CRM Simulation & Microphysical Analysis of Three (3) Late Season Mediterranean Floods brown trajectories: > 2.0 km precipitation feed green trajectories: < 1.5 km precipitation feed 427 mm

18 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 18 [ , Q D,  Q D ] Anomaly [ Satellite ][ NCEP ] Comparison of Satellite [Q D ] Anomalies to SST Anomalies Mean SST and Anomalies

19 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 19 Towards a GPM Community Ground Validation Project 1. Black dot on globe represents "Anywhere" -- U.S. or World. GPM constellation members provide: ** Rainfall amount (time, lat, lon) ** Community rain gauge networks, i.e., CRGNs (e.g., GLOBE, Farming, TV, School networks) or backyard recreational gauges) provide: ** Rainfall amount (time, lat, lon) ** CRGNs-potential independent validator of GPM-retrieved pixel values. 2. CRGN validation procedure Members of CRGNs can access World Precipitation Data System (WPDS) via password protected internet portal and enter independent rain gauge measurements. 3. Then question is, does: GPM rainfall (time, lat, lon) = CRGN rainfall (time, lat, lon) ? GPM rainfall (time, lat, lon) = CRGN rainfall (time, lat, lon) ? Project Enables: broader science validation public involvement in meaningful science research formal & informal education activities & resources

20 GPM May 21, 2002 Eric A. Smith easmith@pop900.gsfc.nasa.govhttp://gpmscience.gsfc.nasa.gov 20 SSM/I Era TRMM Era EOS or GPM Precursor Era GPM Era


Download ppt "GPM May 21, 2002 Eric A. Smith 1 2nd International Planning Workshop on GPM Eric A. Smith;"

Similar presentations


Ads by Google