Download presentation
Presentation is loading. Please wait.
Published byBathsheba O’Connor’ Modified over 9 years ago
1
Pharmacological and analytical aspects of bergenin: a concise report 张 慧 2012213034 Asian Pacific Journal of Tropical Disease (2012) 163–167
2
Abstracts P resent review described the pharmacological activity, analytical methods and isolation techniques of bergenin, which give an idea about the nature and activity of bergenin. T his review could be helpful to the researchers in the future for the development of new drugs for the treatment of various types of illness. T he data in the present review were collected from the available literature sources.
3
Contents 1. Introduction 2. Pharmacological activity 3. Physicochemical properties of bergenin 4. Chemical derivative of bergenin 5. Isolation of bergenin 6. Analytical techniques 7. Discussion
4
Structure of bergenin. 1. Introduction
6
a colourless crystalline polyphenol It is hydrolyzable tannin and an isocoumarin derivative with three hydroxyl (OH) groups and two phenolic OH groups Bergenial crassifolia Mallotus philippinensis Corylopsis spicata Caesalpinia digyna Mallotus japonicus Isolated from
7
2. Pharmacological activity 2.1 Antiinflammatory activity 2.2 Antimicrobial activity Bergenin modulation of Th1/Th2 cytokine balance show anti-arthritic activity. Norbergenin inhibits the growth of the yeasts C. albicans, C.tropicalis, but presents lower activity against filamentous fungi Aspergillus flavus.
8
showed antioxidant activity in lipid peroxidation, superoxide and DPPH radical assays. 2.3 Antioxidant activity Bergenin showed antiviral activity against herpes simplex virus type-1 in non cytotoxic concentrations. 2.4 Cytotoxic activity 2. Pharmacological activity 2.5 Effect of bergenin on bioavailability bergenin-phospholipid complex(BPC)
9
extensive use Bergenin exhibits various biological activities such as antiulcer, antifungal, immunomodulatory and burn wound healing. in human the lack of a sensitive assay for its determination in biological fluids 2. Pharmacological activity
10
solid state characteristics solution stability dissociation constant solubility Physicochemical properties octanol/water partition coefficient (Log P) 3. Physicochemical properties of bergenin
11
RAE-1 Properties: White granular crystal, easily soluble in DMSO, pyridine, soluble in MeOH, insoluble in P. ether, CH 2 Cl 2 and EtOAc. A dark spot under UV254 nm, no fluorescence under UV365 nm on silica gel TLC. Turn gray-blue in 2% FeCl 3 -EtOH, and drab yellow in 5% PMA-EtOH. Purity test: GF 254 silica gel TLC EtOAc: MeOH: H 2 O: HAc = 95: 5: 4: 5 R f = 0.51 EtOAc: Me 2 CO: H 2 O: HAc = 7: 3: 0.3: 0.5R f = 0.51 CH 2 Cl 2 : MeOH: H 2 O: HAc = 82: 18: 1: 5R f = 0.47 RAE-1, 11.06 mg, 1 H-NMR, in DMSO-d 6.
12
RAE-1 solvent peak water peak
13
H-4,s 7-OH,s 5-OH,s RAE-1
14
13-OH,d,5.3Hz 12-OH,d,5 Hz 16-OH,t H-9,d,10.8 Hz RAE-1
15
H-14,dd,9.8 Hz,9.8 Hz 16-Hb,dd,11.6Hz,4.4Hz OMe
16
H-13,ddd,8.8 Hz,5.6 Hz,5.6 Hz H-11,br t,8.8 Hz 16-Ha,ddd,12.4 Hz,6.8 Hz,6.8 Hz H-12,ddd,8.8 Hz,6 Hz,6 Hz
17
No.Obs. (400 MHz, DMSO-d 6 )Ref. (400 MHz, DMSO-d 6 )Difference H-46.99 (1H, s)6.98 (s)0.01 H-94.98 (1H, d, J = 10.8 Hz)4.96 ( d, J = 10.4 Hz)0.02 H-144.00 (1H, dd, J = 10, 9.6 Hz)4.00 (dd, J = 10.4, 9.5 Hz)0.00 H-16b3.84 (1H, dd, J = 11.6, 4.4 Hz)3.85 (dd, J = 10.9, 3.2 Hz)-0.01 H-153.78 (3H, s)3.780.00 H-133.65 (1H, ddd, J = 8.8, 5.6, 5.6 Hz)3.65 (ddd, J = 9.5, 8.8, 5.3 Hz)0.00 H-113.57 (1H, t, J = 8.8 Hz)3.58 (ddd, J = 7.6, 3.2, 1.9 Hz)-0.01 H3.44 (1H, ddd, J = 12.4, 6.8, 6.8 Hz)3.44 (ddd, J = 10.9, 8.1, 1.9 Hz)0.00 H-123.20 (1H, ddd, J = 8.8, 6.6 Hz)3.20 (ddd, J = 8.8, 7.6, 5.0 Hz)0.00 5-OH9.75 (1H, s)9.76 (s)-0.01 7-OH8.45 (1H, s)8.45 (s)0.00 13-OH5.65 (1H, d, J = 5.2 Hz)5.64 ( d, J = 5.3 Hz)0.01 12-OH5.43 (1H, d, J = 6 Hz)5.42 ( d, J = 5 Hz)0.01 16-OH4.91 (1H, t)4.91 (m)0.00 Table 2-2 1 H-NMR spectroscopic data for RAE-1 (400 MHz, DMSO-d 6 ) and compared with literature Abreu H A, Lago I A, Souza G P et al. Antioxidant activity of (+)-bergenin—a phy- toconstituent isolated from the bark of Sacoglottis uchi Huber (Humireaceae) [J]. Organic and Biomolecular Chemistry, 2008, 6: 2713-2718.
18
4. Chemical derivative of bergenin using.H,.OH,.CH 3,and.CCl 3 Frontier molecular orbital analysis DFT thermodynamic calculations
19
RAE-13 Properties: White amorphous powder, easily soluble in MeOH, insoluble in CH 2 Cl 2. A dark spot under UV254 nm, no fluorescence under UV365 nm on silica gel TLC. Turn blue-black in 2% FeCl 3 -EtOH, light gray-blue in 5% PMA-EtOH, and light red in 5% H 2 SO 4 -EtOH. Purity test: GF 254 silica gel TLC CH 2 Cl 2 : MeOH : H 2 O : HAc = 8:2:2d:10d R f = 0.45 CH 2 Cl 2 : Me 2 CO : H 2 O : HAc = 5:5:2d:10dR f = 0.39 Polyamide TLC CH 2 Cl 2 : MeOH : H 2 O : HAc = 6:4:3d:10d R f = 0.44 Me 2 CO : MeOH : H 2 O : HAc = 7:3:4d:10dR f = 0.60 EtOAc : MeOH : H 2 O : HAc = 6:4:7d:10dR f = 0.48 RAE-13, 7 mg, 1 H-NMR, in CD 3 OD. RAE-13, 30 mg, 13 C-NMR, in CD 3 OD.
20
solvent peak water peak RAE-13
21
H-2’, H-6’, s H-7, s H-4,dd,9 Hz,9.6 Hz H-10b,d,10.8Hz RAE-13
22
s, -OCH 3 H-4a,t,10.2 Hz H-3,dd,12 Hz H-2,H-11,m,overlapped RAE-13
23
solvent peak RAE-13
24
7’ 4’ 3’,5’ 2’,6’ 1’ OMe 11 2 3 4 4a 6 6a 7 8 9 10 10a 10b RAE-13
25
Table 1 13 C-NMR spectroscopic data for RAE-13(600 MHz, CD 3 OD) and compared with literature No.Obs. (600 MHz, CD 3 OD) Ref. ( 22.6 MHz, MeOH-d 4 -DMSO-d 6 (15: 1)) Difference C-281.783.3-1.6 C-368.770.3-1.6 C-474.876.6-1.8 C-4a77.779.3-1.6 C-6164166.1-2.1 C-6a117.9119.7-1.8 C-7109.9111.9-2 C-8151.0152.9-1.9 C-9141.0143.1-2.1 C-10148.0150.0-2 C-10a115.6117.5-1.9 C-10b C-11 OMe 72.974.5-1.6 6162.6-1.6 6061.4-1.4 Takashi Y, Kaoru S, Yukiko T et al. Bergenin derivatives from Mallotus japonicus [J]. Phytochemistry, 1982, 21(5): 1180-1182.
26
No.Obs. (600 MHz, CD 3 OD) Ref. ( 22.6 MHz, MeOH-d 4 -DMSO-d 6 (15: 1)) Difference C-1’119.9121.9-2 C-2’, C-6’109.1111.2-2.1 C-3’, C-5’145.1147.2-2.1 C-4’138.6140.7-2.1 C-7’166.4168.6-2.2 Table 1(continue) 13 C-NMR spectroscopic data for RAE-13(600 MHz, CD 3 OD) and compared with literature Takashi Y, Kaoru S, Yukiko T et al. Bergenin derivatives from Mallotus japonicus [J]. Phytochemistry, 1982, 21(5): 1180-1182.
27
compoundplantpartmethod 11-O-(4’-O- methylgalloyl)- bergenin Crassula cv. ‘Himaturi’ the MeOH extractSilica gel CC BergeninPhyllanthus wightianus column chromatographic methods BergeninDryobalanops aromatica the acetone extractvacuum and radial chromatography techniques BergeninTridax procumbens aerial partssilica gel column chromatography BergeninFicus racemosacold aqueous extract hot aqueous extract HPLC Bergenin and 4-O- galloylbergenin Mallotus philippensis leavessilica gel CC 11-O- caffeoylbergenin Securinega virosaleaves BergeninPeltophorum africanum ethyl acetate and butanol extracts of the stem bark the methanol extract of the roots and stem-bark 11-O- acetylbergenin and bergenin Flueggea virosa Column chromatography BergeninTeramnus labialismethanolic extractivesBioassay-guided fractionation 5. Isolation of bergenin
28
BergeninShorea robustaacetone and methanol extracts of roots BergeninPentaclethra macrophylla EtOAc of Air-dried and ground root bark vacuum column chromatography BergeninArdisia japonicathe whole plant BergeninMallotus roxburghianus leaves BergeninSacoglottis uchibarkrecrystallized BergeninEndopleura uchithe extract of fruit pulp conventional chromatographic techniques BergeninEndopleura uchithe methanolic extractliquid-liquid partition chromatography followed by column chromatography over Sephadex LH-20 and silica gel 60 flash chromatography BergeninEndopleura uchiethyl acetate fraction of bark column chromatography over sephadex LH-20 and then silica gel 60 flash rivebergenin A and B Rivea hypocrateriformis Choisy stemRP-18 column
29
compoundplantpartmethod bergenin and a bergenin derivative(a dimer of bergenin) Astilbe rivularisrhizomesBioassay-guided fractionation (Sephadex LH 20 polyamide column HPLC) 11-O-(3’-O- methylgalloyl)-bergenin Bergenin Astilbe chinensisrhizomes silica gel CC BergeninAstilbe thunbergiirhizomes BergeninBergenia crassifolia leaves’ extracts HPTLC 11-O-(4-O- methylgalloyl)bergenin Saxifraga melanocentra Franch aerial parts silica gel C. C polyamide C. C
32
6. Analytical techniques Plant/Sourcemethod Rodgersia HPLC : Agilent Zorbax XDB-C18 column mobile phase : acetonitrile-0.2% phosphoric acid solution flow rate : 1.0 mL/min Bergenia purpurascens HPLC Bergenia ciliata Bergenia ligulata TLC : toluene: ethyl acetate: formic acid (4:6:1, v/ v) Bergenia ligulata Bergenia ciliata Bergenia stracheyi RP-HPLC method coupled with photodiode- array detection Caesalpinia digynaLC-MS Highest: Rodgersia sambucifolia Hemsl Lowest: Rodgersia aesculifolia Batalin
33
bergenin in human plasma after oral administration high-performance liquid chromatography- tandem mass spectrometry bergenin in human plasma after oral administration liquid chromatography/tandem mass spectrometry bergenin in rabbit plasma after intravenous administration HPLC bergenin in rat plasma after intravenous administration reversed-phase HPLC bergenin content in dicha kechuan oral liquid HPLC
34
Bergenia species contain most bergenin, so the most potent plant species is used in herbal formulations and has the strongest desired effect. 7. Discussion Bergenia species are important medicinal plants distributed in South and East Asia and European countries. In India these plants grow at high altitudes in the Himalayas usually in rocky areas and on cliffs. This review gives an idea about the nature and activity of bergenin which might be used in the future for the development of new drugs for the treatment of various type of illness.
35
Thank you !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.