Download presentation
Presentation is loading. Please wait.
1
1/26 VHDL VHDL Structural Modeling Digital Logic
2
2/26 Outline Structural VHDL Use of hierarchy Component instantiation statements Concurrent statements Test Benches
3
3/26 A general VHDL design entity entity-name is [port ( In_1, In_2, In_3 : in bit; out_1, out_2 : out bit; inout_1, inout_2 : inout bit);] end [entity] [entity-name]; architecture arch-name of entity-name is [declaration] begin architecture body end [architecture] [arch-name];
4
4/26 Component and Signal Declarations DECLARATION of architecture contains: component declaration signal declaration Example of component declaration component AND2_OP port (A, B : in bit; Z : out bit); end component; Example of signal declaration signal list-of-signal-names : type-name [ := initial-value] ; ex) signal sig_a, sig_b : bit ;
5
5/26 Concurrent Assignment entity fulladder_df is port ( A, B, Cin : in bit; Sum, Cout : out bit); end fulladder_df; architecture data_flow of fulladder_df is begin Sum <= A xor B xor Cin; Cout <= (A and B) or (A and Cin) or (B and Cin); end data_flow;
6
6/26 Process entity fulladder_bh is port ( A, B, Cin : in bit; Sum, Cout : out bit); end fulladder_bh; architecture behavioral of fulladder_bh is begin process (A, B, Cin) begin if ( A = ‘0’ and B = ‘0’ and Cin = ‘0’) then Sum <= ‘0’; Cout <= ‘0’; elsif ( A = ‘0’ and B = ‘0’ and Cin = ‘1’) then Sum <= ‘1’; Cout <= ‘0’; elsif ( A = ‘0’ and B = ‘1’ and Cin = ‘0’) then Sum <= ‘1’; Cout <= ‘0’; elsif ( A = ‘0’ and B = ‘1’ and Cin = ‘1’) then Sum <= ‘0’; Cout <= ‘1’; elsif ( A = ‘1’ and B = ‘0’ and Cin = ‘0’) then Sum <= ‘1’; Cout <= ‘0’; elsif ( A = ‘1’ and B = ‘0’ and Cin = ‘1’) then Sum <= ‘0’; Cout <= ‘1’; elsif ( A = ‘1’ and B = ‘1’ and Cin = ‘0’) then Sum <= ‘0’; Cout <= ‘1’; else Sum <= ‘1’; Cout <= ‘1’; end if; end process; end behavioral;
7
7/26 Component Instantiation Statements The statement part of an architecture body of a structural VHDL description contains component instantiation statements FORMAT label : component_name port map (positional association of ports); label : component_name port map (named association of ports); EXAMPLES A1 : AND2_OP port map (A_IN, B_IN, INT1); A2 : AND2_OP port map (A => A_IN, C => C_IN, Z => INT2);
8
8/26 Component entity fulladder_st is port ( A, B, Cin : in bit; Sum, Cout : out bit); end fulladder_st; architecture structral of fulladder_st is componenet XOR3_OP port ( IN_A, IN_B, IN_C : in bit; OUT_Z : out bit ); end component; componenet AOI3_OP port ( IN_A, IN_B, IN_C : in bit; OUT_Z : out bit ); end component; begin XOR : XOR3_OP port map (A, B, Cin, Sum); AOI : AOI3_OP port map (A, B, Cin, Cout); end structral;
9
9/26 Hirarchical Structure Can combine 4 fulladder_xx functions (defined earlier) to form another 4-bit fulladder function component fulladder_st port (A, B, Cin : in bit; Sum, Cout : out bit); end component; signal sig_c0, sig_c1, sig_c2 : bit; begin FA0 : fulladder_df port map (A(0), B(0), Cin, Sum(0), sig_c0); FA1 : fulladder_bh port map (A(0), B(0), sig_c0, Sum(0), sig_c1); FA2 : fulladder_st port map (A(0), B(0), sig_c1, Sum(0), sig_c2); FA3 : fulladder_bh port map (A(0), B(0), sig_c2, Sum(0), Cout); end hirarchical; entity fulladder_4bit is port (A, B : in bit_vetcor (3 downto 0); Cin : in bit; Sum : out bit_vetcor (3 downto 0); Cout : out bit); end fulladder_4bit ; architecture hirarchical of fulladder_4bit is component fulladder_df port (A, B, Cin : in bit; Sum, Cout : out bit); end component; component fulladder_bh port (A, B, Cin : in bit; Sum, Cout : out bit); end component;
10
10/26 Example of a four-bit register entity reg4 is port ( en, clk : in bit; d : in bit_vector (3 downto 0); q : out bit_vector (3 downto 0)); end reg4; Let us look at a 4-bit register built out of 4 D latches
11
11/26 Behavioral Description of Register architecture behavior of reg4 is begin process variable stored_d : bit_vector (3 downto 0); begin if (en = ‘1’ and clk = ‘1’) then stored_d(3) := d(3); stored_d(2) := d(2); stored_d(1) := d(1); stored_d(0) := d(0); endif; q(3) <= stored_d(3); q(2) <= stored_d(2); q(1) <= stored_d(1); q(0) <= stored_d(0); wait on d; end process; end behavior;
12
12/26 Structral Composition of Register entity d_latch is port (d, clk : in bit; q : out bit); end d_latch; architecture arch_dff of d_latch is begin process (clk) begin if (clk = ‘1’) then q <= d; end if; end process; end arch_dff; entity and2_op is port ( x, y : in bit; z : out bit); end and2_op; architecture arch_and2 of and2_op is begin z <= x and y; end arch_and2;
13
13/26 Structural Description of Register architecture struct of reg4 is component d_latch port (d, clk : in bit; q : out bit); end component; component and2_op port (x, y : in bit; z : out bit); end component; signal int_clk : bit; begin DFF3 : d_latch port map(d(3), int_clk, q(3)); DFF2 : d_latch port map(d(2), int_clk, q(2)); DFF1 : d_latch port map(d(1), int_clk, q(1)); DFF0 : d_latch port map(d(0), int_clk, q(0)); AND : and2_op port map(en, clk, int_clk); end struct;
14
14/26 Mixed Models Models need not be purely structural or behavioral Often it is useful to specify a model with some parts composed of interconnected component instances and other parts using processes Use signals as a way to join component instances and processes A signal can be associated with a port of a component instance and can be assigned to or read in a process
15
15/26 Example of Mixed Modeling : Multiplier
16
16/26 Example of Mixed Modeling : Multiplier entity multiplier is port ( clk, reset : in bit; multiplicand, multiplier : in integer; product : out integer); end multiplier; architecture mixed of multiplier is signal partial_product : integer; signal full_product : integer; signal arith_control, result_en, mult_bit, mult_load : bit; compononent shift_adder port ( addend, augend : in integer; arith_control : in bit; sum : out interger); end component; compononent shift_adder port ( addend, augend : in integer; arith_control : in bit; sum : out interger); end component; compononent shift_adder port ( addend, augend : in integer; arith_control : in bit; sum : out interger); end component; begin arith_unit : shift_adder port map ( addend => multiplicand, augend =>full_product, sum => partial_product, add_control => arith_control); result : reg port map (d => partial_product, q => full_product, en => result_en, reset => reset); multiplier_sr : shift_reg port map (d => multiplier, q => mult_bit, load => mult_load, clk => clk); product <= full_product; process begin -- sequential statements end process; end mixed;
17
17/26 Concurrent Signal Assignment entity XOR2_OP is port (A, B : in bit; Z : out bit); end XOR2_OP; architecture AND_OR of XOR2_OP is begin Z <= ((not A) and B) or (A and (not B)); end AND_OR; The signal assignment ‘ Z <= ((not A) and B) or (A and (not B));’ Implies that the statement is executed whenever an associated signal changes value
18
18/26 Concurrent Signal Assignment entity XOR2_OP is port (A, B : in bit; Z : out bit); end XOR2_OP; architecture AND_OR of XOR2_OP is signal INT1, INT2 : bit; begin -- different order, same effect INT1 <= A and (not B); -- Z <= INT1 or INT2; INT2 <= (not A) and B; -- INT1 <= A and (not B); Z <= INT1 or INT2; -- INT2 <= (not A) and B; end AND_OR; Above, the first two statements will be executed when A or B changes, and third if Z changes Order of statements in the text does not matter
19
19/26 Concurrent and Sequential Statements VHDL provide both concurrent and sequential signal assignments Example SIG_A <= IN_A and IN_B; SIG_B <= IN_A nor IN_C; SIG_C <= not IN_D; The above sequence of statements can be concurrent or sequential depending on context If above appears inside an architecture body, it is a concurrent signal assignment If above appears inside a process statement, they will be executed sequentially
20
20/26 Data Flow Modeling of Combinational Logic Consider a parity function of 8 inputs entity EVEN_PARITY is port ( BVEC : in bit_vector(7 downto 0); PARITY: out bit); end EVEN_PARITY; architecture DATA_FLOW of EVEN_PARITY is begin PARITY <= BVEC(0) xor BVEC(1) xor BVEC(2) xor BVEC(3) xor BVEC(4) xor BVEC(5) xor BVEC(6) xor BVEC(7); end DATA_FLOW ;
21
21/26 Alternative Logic Implementations of PARITY TREE CONFIGURATION architecture TREE of EVEN_PARITY is signal INT1, INT2, INT3, INT4, INT5, INT6 : bit; begin INT1 <= BVEC(0) xor BVEC(1) ; INT2 <= BVEC(2) xor BVEC(3) ; INT3 <= BVEC(4) xor BVEC(5) ; INT4 <= BVEC(6) xor BVEC(7) ; INT5 <= INT1 xor INT2; INT6 <= INT3 xor INT4; PARITY <= INT5 xor INT6; end TREE ;
22
22/26 Alternative Logic Implementations of PARITY CASCADE CONFIGURATION architecture CASCADE of EVEN_PARITY is signal INT1, INT2, INT3, INT4, INT5, INT6 : bit; begin INT1 <= BVEC(0) xor BVEC(1) ; INT2 <= INT1 xor BVEC(2) ; INT3 <= INT2 xor BVEC(3) ; INT4 <= INT3 xor BVEC(4) ; INT5 <= INT4 xor BVEC(5) ; INT6 <= INT5 xor BVEC(6); PARITY <= INT6 xor BVEC(7); end CASCADE ;
23
23/26 Alternates Architecture Bodies Three different VHDL descriptions of the even parity generator were shown They have the same interface but three different implementation Use the same entity description but different architecture bodies architecture DATA_FLOW of EVEN_PARITY is... architecture TREE of EVEN_PARITY is... architecture CASCADE of EVEN_PARITY is...
24
24/26 Test Benches One needs to test the VHDL model through simulation We often test a VHDL model using an enclosing model called a test bench A test bench consists of an architecture body containing an instance of the component to be tested It also consists of processes that generate sequences of values on signals connected to the component instance
25
25/26 Example Test Bench entity test_bench is end test_bench; architecture test_reg4 of test_bench is signal sig_d, sig_q : bit_vector (3 downto 0); signal sig_en, sig_clk : bit; begin tb_reg4 : reg4 port map (sig_en, sig_clk, sig_d, sig_q); process begin d <= “1111”; en <= ‘0’; clk <= ‘0’; wait for 20 ns; en <= ‘1’; wait for 20 ns; clk <= ‘1’; wait for 20 ns; d <= “0000”; wait for 20 ns; en <= ‘0’; wait for 20 ns; …. wait; end process; end test_reg4 ;
26
26/26 Summary Structural VHDL Use of hierarchy Component instantiation statements Concurrent statements Test Benches
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.