Download presentation
Presentation is loading. Please wait.
Published byEverett Carson Modified over 9 years ago
1
Negative Examples for Sequential Importance Sampling of Binary Contingency Tables Ivona Bezáková (RIT) Daniel Štefankovič (Rochester) Alistair Sinclair (Berkeley) Eric Vigoda (Gatech)
2
The Voyage of the Beagle Galápagos archipelago (1835) Darwin’s Finches
3
© Robert H. Rothman Darwin’s Finches
4
10 8 Darwin’s Finches
5
8 9 6 2 3 7 8 1 6 4 2 10 935738 9 8 chance OR competitive pressures ?
6
Given: marginals (row sums, column sums) Goal: sample tables uniformly at random count tables 2 3 21 3 32 5 342 4 Binary Contingency Tables
7
Given: marginals (row sums, column sums) Goal: sample tables uniformly at random count tables 2 3 21 3 32 5 342 4 Binary Contingency Tables
8
Given: marginals (row sums, column sums) Goal: sample tables uniformly at random count tables 2 3 21 3 32 5 342 4
9
Importance Sampling for counting problems x with positive probability (x)>0 Probability distribution on the points + Random variable (s) = 1/ (s) 0 if s in the set if s is { Unbiased estimator E[ ] = (x).1/ (x) = size of the set
10
2 3 21 3 32 5 342 4 a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] Sequential Importance Sampling for BCT
11
2 3 22 3 12 5 433 4 a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] Sequential Importance Sampling for BCT
12
2 3 22 3 12 5 433 4 a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] Sequential Importance Sampling for BCT
13
2 3 3 5 4 4 a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] Sequential Importance Sampling for BCT
14
2 3 3 5 4 4 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] r i /(n-r i ) where product ranges over i: rows with assignment 1 Sequential Importance Sampling for BCT
15
1 2 2 5 4 3 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 3 r i /(n-r i ) Sequential Importance Sampling for BCT
16
1 2 2 5 4 3 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 3 r i /(n-r i ) Sequential Importance Sampling for BCT
17
0 1 2 4 4 3 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 33 r i /(n-r i ) Sequential Importance Sampling for BCT
18
4 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 33 r i /(n-r i ) 0 1 2 4 3 Sequential Importance Sampling for BCT
19
0 1 1 3 4 2 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 332 r i /(n-r i ) Sequential Importance Sampling for BCT
20
4 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 332 r i /(n-r i ) 0 1 1 3 2 Sequential Importance Sampling for BCT
21
0 1 1 2 4 1 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 3322 r i /(n-r i ) Sequential Importance Sampling for BCT
22
4 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 3322 r i /(n-r i ) 0 1 1 2 1 Sequential Importance Sampling for BCT
23
0 1 0 1 4 1 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 33222 r i /(n-r i ) Sequential Importance Sampling for BCT
24
4 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 33222 r i /(n-r i ) 0 1 0 1 1 Sequential Importance Sampling for BCT
25
0 1 0 0 4 0 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 332221 r i /(n-r i ) Sequential Importance Sampling for BCT
26
4 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 332221 r i /(n-r i ) 0 1 0 0 0 Sequential Importance Sampling for BCT
27
4 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 332221 r i /(n-r i ) 0 0 0 0 0
28
Sequential Importance Sampling for BCT 4 assign the column with probability proportional to a specific fill table column-by-column assign each column ignoring other column sums [Chen-Diaconis-Holmes-Liu ’05] where product ranges over i: rows with assignment 1 332221 r i /(n-r i ) 2 3 3 5 4
29
A Counterexample for SIS 111111 mm 1 mm 1 1 1 Thm [Bezáková-Sinclair-Štefankovič-Vigoda ‘06]: For any , SIS output after any subexponential number of trials is off by an exponential factor (with high probability).
30
A Counterexample for SIS 111111 1 mm 1 1 1 Thm [Bezáková-Sinclair-Štefankovič-Vigoda ‘06]: For any , SIS output after any subexponential number of trials is off by an exponential factor (with high probability). Intuition 1
31
A Counterexample for SIS 111111 1 mm 1 1 1 Thm [Bezáková-Sinclair-Štefankovič-Vigoda ‘06]: For any , SIS output after any subexponential number of trials is off by an exponential factor (with high probability). Intuition 1 Random table: - randomly choose m ones
32
A Counterexample for SIS 111111 1 mm 1 1 1 Thm [Bezáková-Sinclair-Štefankovič-Vigoda ‘06]: For any , SIS output after any subexponential number of trials is off by an exponential factor (with high probability). Intuition 1 Random table: - randomly choose m ones
33
A Counterexample for SIS 111111 1 mm 1 1 1 Thm [Bezáková-Sinclair-Štefankovič-Vigoda ‘06]: For any , SIS output after any subexponential number of trials is off by an exponential factor (with high probability). Intuition 1 Random table: - randomly choose m ones
34
A Counterexample for SIS 111111 1 mm 1 1 1 Thm [Bezáková-Sinclair-Štefankovič-Vigoda ‘06]: For any , SIS output after any subexponential number of trials is off by an exponential factor (with high probability). Intuition 1 Random table: - randomly choose m ones mm Expect: m ones SIS: asymptotically fewer
35
A Counterexample for SIS Thm [Bezáková-Sinclair-Štefankovič-Vigoda ‘06]: For any , SIS output after any subexponential number of trials is off by an exponential factor (with high probability). Intuition Expect: m ones SIS: asymptotically fewer all tables tables with ~ m ones tables seen by SIS whp
36
SIS – Experimental Results Bad example, m = 300, = 0.6, = 0.7 log-scale of SIS estimate number SIS steps correct
37
SIS – Experimental Results Regular marginals: m=50, marginals 5 SIS estimate number SIS steps correct
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.